
 

16.   Basic Index Number Theory 

A.   Introduction 

The answer to the question what is the Mean of a given set of magnitudes cannot in general be found, 
unless there is given also the object for the sake of which a mean value is required. There are as many 
kinds of average as there are purposes; and we may almost say in the matter of prices as many 
purposes as writers. Hence much vain controversy between persons who are literally at cross purposes. 
(F.Y. Edgeworth. 1888, p. 347) 

 
16.1 The number of physically distinct goods and unique types of services that consumers 
can purchase is in the millions. On the business or production side of the economy, there are 
even more products that are actively traded. The reason is that firms not only produce 
products for final consumption, they also produce exports and intermediate products that are 
demanded by other producers. Firms collectively also use millions of imported goods and 
services, thousands of different types of labor services, and hundreds of thousands of specific 
types of capital. If we further distinguish physical products by their geographic location or by 
the season or time of day that they are produced or consumed, then there are billions of 
products that are traded within each year in any advanced economy. For many purposes, it is 
necessary to summarize this vast amount of price and quantity information into a much 
smaller set of numbers. The question that this chapter addresses is the following: how exactly 
should the microeconomic information involving possibly millions of prices and quantities be 
aggregated into a smaller number of price and quantity variables? This is the basic index 
number problem. 

16.2 It is possible to pose the index number problem in the context of microeconomic 
theory; that is, given that we wish to implement some economic model based on producer or 
consumer theory, what is the best method for constructing a set of aggregates for the model? 
However, when constructing aggregate prices or quantities, other points of view (that do not 
rely on economics) are possible. Some of these alternative points of view will be considered 
in this chapter and the next chapter. Economic approaches will be pursued in Chapter 18.  

16.3 The index number problem can be framed as the problem of decomposing the value 
of a well defined set of transactions in a period of time into an aggregate price multiplied by 
an aggregate quantity term. It turns out that this approach to the index number problem does 
not lead to any useful solutions. Therefore, in section B, the problem of decomposing a value 
ratio pertaining to two periods of time into a component that measures the overall change in 
prices between the two periods (this is the price index) multiplied by a term that measures the 
overall change in quantities between the two periods (this is the quantity index). The simplest 
price index is a fixed–basket index. In this index, fixed amounts of the n quantities in the 
value aggregate are chosen, and then this fixed basket of quantities at the prices of period 0 
and period 1 are calculated. The fixed–basket price index is simply the ratio of these two 
values, where the prices vary but the quantities are held fixed. Two natural choices for the 
fixed basket are the quantities transacted in the base period, period 0, or the quantities 
transacted in the current period, period 1. These two choices lead to the Laspeyres (1871) and 
Paasche (1874) price indices, respectively.  



 
 

 

16.4 Unfortunately, the Paasche and Laspeyres measures of aggregate price change can 
differ, sometimes substantially. Thus Section C considers taking an average of these two 
indices to come up with a single measure of price change. Section C.1 argues that the best 
average to take is the geometric mean, which is Irving Fisher’s (1922) ideal price index. In 
section C.2, instead of averaging the Paasche and Laspeyres measures of price change, taking 
an average of the two baskets is considered. This–fixed basket approach to index number 
theory leads to a price index advocated by Walsh (1901, 1921a). However, other fixed 
basket–approaches are also possible. Instead of choosing the basket of period 0 or 1 (or an 
average of these two baskets), it is possible to choose a basket that pertains to an entirely 
different period, say period b. In fact, it is typical statistical agency practice to pick a basket 
that pertains to an entire year (or even two years) of transactions in a year before period 0, 
which is usually a month. Indices of this type, where the weight reference period differs from 
the price reference period, were originally proposed by Joseph Lowe (1823), and in Section 
D indices of this type will be studied. They will also be evaluated from the axiomatic 
perspective in Chapter 17 and from the economic perspective in Chapter 18.1 

16.5 In Section E, another approach to the determination of the functional form or the 
formula for the price index is considered. This approach, introduced by the French 
economist, Divisia (1926), is based on the assumption that price and quantity data are 
available as continuous functions of time. The theory of differentiation is used in order to 
decompose the rate of change of a continuous time value aggregate into two components that 
reflect aggregate price and quantity change. Although Divisia’s approach offers some 
insights,2 it does not offer much guidance to statistical agencies in terms of leading to a 
definite choice of index number formula. 

16.6 In Section F, the advantages and disadvantages of using a fixed–base period in the 
bilateral index number comparison are considered versus always comparing the current 
period with the previous period, which is called the chain system. In the chain system, a link 
is an index number comparison of one period with the previous period. These links are 
multiplied to make comparisons over many periods.  

B.   Decomposition of Value Aggregates into Price and Quantity 
Components 

B.1 Decomposition of value aggregates and the product test 

16.7 A price index is a measure or function that summarizes the change in the prices of 
many products from one situation 0 (a time period or place) to another situation 1. More 
specifically, for most practical purposes, a price index can be regarded as a weighted mean of 
                                                 

1Indices of this type will not appear in Chapter 19, where most of the index number formulas exhibited in 
Chapters 15–18 will be illustrated using an artificial data set.  However, indices where the weight reference 
period differs from the price reference period will be illustrated numerically in Chapter 22, where the problem 
of seasonal products will be discussed. 

2In particular, it can be used to justify the chain system of index numbers, which will be discussed in Section 
E. 



 
 

 

the change in the relative prices of the products under consideration in the two situations. To 
determine a price index, it is necessary to know: 

(i)  Which products or items to include in the index, 
(ii)  How to determine the item prices, 
(iii)  Which transactions that involve these items to include in the index, 
(iv)  How to determine the weights and from which sources should these weights be drawn, 

and 
(v)  What formula or type of mean should be used to average the selected item relative 

prices. 
 
All of the above price index definition questions except the last can be answered by 
appealing to the definition of the value aggregate to which the price index refers. A value 
aggregate V for a given collection of items and transactions is computed as: 
 

(16.1) 
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where pi represents the price of the ith item in national currency units, qi represents the 
corresponding quantity transacted in the time period under consideration and the subscript i 
identifies the ith elementary item in the group of n items that make up the chosen value 
aggregate V. Included in this definition of a value aggregate is the specification of the group 
of included products (which items to include) and of the economic agents engaging in 
transactions involving those products (which transactions to include), as well as the valuation 
and time of recording principles motivating the behavior of the economic agents undertaking 
the transactions (determination of prices). The included elementary items, their valuation (the 
pi), the eligibility of the transactions, and the item weights (the qi) are all within the domain 
of definition of the value aggregate. The precise determination of the pi and qi was discussed 
in more detail in Chapter 3 and other chapters.3 
 
16.8 The value aggregate V defined by equation (16.1) above referred to a certain set of 
transactions pertaining to a single (unspecified) time period. Now, consider the same value 
aggregate for two places or time periods, periods 0 and 1. For the sake of definiteness, period 
0 is called the base–period and period 1 is called the current period. Assume that 
observations on the base–period price and quantity vectors, p0 ≡ [p1

0,…,pn
0] and q0 ≡ 

[q1
0,…,qn

0], respectively, have been collected.4 The value aggregates in the two periods are 
defined in the obvious way as 

                                                 
3Ralph Turvey has noted that some values may be difficult to decompose into unambiguous price and quantity 

components.  Some examples of values difficult to decompose are bank charges, gambling expenditures, and 
life insurance payments. 

4Note that it is assumed that there are no new or disappearing products in the value aggregates.  Approaches to 
the “new goods problem” and the problem of accounting for quality change are discussed in Chapters 7, 8, and 
21. 
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16.9 In the previous paragraph, a price index was defined as a function or measure that 
summarizes the change in the prices of the n products in the value aggregate from situation 0 
to situation 1. In this paragraph, a price index P(p0,p1,q0,q1) along with the corresponding 
quantity index (or volume index) Q(p0,p1,q0,q1) is defined as two functions of the 4n variables 
p0,p1,q0,q1 (these variables describe the prices and quantities pertaining to the value aggregate 
for periods 0 and 1), where these two functions satisfy the following equation:5 

(16.3) 1 0 0 1 0 1 0 1 0 1
.  ) V / V P(p , p ,q ,q ) Q(p , p ,q ,q =  

 
If there is only one item in the value aggregate, then the price index P should collapse to the 
single–price ratio p1

1/p1
0 and the quantity index Q should collapse to the single–quantity ratio 

q1
1/q1

0. In the case of many items, the price index P is to be interpreted as some sort of 
weighted average of the individual price ratios, p1

1/p1
0,…, pn

1/pn
0. 

 
16.10 Thus, the first approach to index number theory can be regarded as the problem of 
decomposing the change in a value aggregate, V1/V0, into the product of a part due to price 
change, P(p0,p1,q0,q1), and a part that is due to quantity change, Q(p0,p1,q0,q1). This approach 
to the determination of the price index is the approach taken in the national accounts, where a 
price index is used to deflate a value ratio to obtain an estimate of quantity change. Thus, in 
this approach to index number theory, the primary use for the price index is as a deflator. 
Note that once the functional form for the price index P(p0,p1,q0,q1) is known, then the 
corresponding quantity or volume index Q(p0,p1,q0,q1) is completely determined by P; that is, 
rearranging equation (16.3): 

(16.4) ( )0 1 0 1 1 0 0 1 0 1
.   )Q(p , p ,q ,q ) V /V / P(p , p ,q ,q=  

 
Conversely, if the functional form for the quantity index Q(p0,p1,q0,q1) is known, then the 
corresponding price index P(p0,p1,q0,q1) is completely determined by Q. Thus, using this 
deflation approach to index number theory, separate theories for the determination of the 
price and quantity indices are not required: if either P or Q is determined, then the other 
function is implicitly determined by the product test equation (16.4). 
 
16.11 In the next subsection, two concrete choices for the price index P(p0,p1,q0,q1) are 
considered, and the corresponding quantity indices Q(p0,p1,q0,q1) that result from using 
equation (16.4) are also calculated. These are the two choices used most frequently by 
national accountants. 

                                                 
5The first person to suggest that the price and quantity indices should be jointly determined to satisfy equation 

(16.3) was Irving Fisher (1911, p. 418).  Frisch (1930, p. 399) called equation (16.3) the product test. 



 
 

 

B.2 Laspeyres and Paasche indices 

16.12 One of the simplest approaches determining the price index formula was described in 
great detail by Joseph Lowe (1823). His approach to measuring the price change between 
periods 0 and 1 was to specify an approximate representative product basket,6 which is a 
quantity vector q ≡ [q1,…,qn] that is representative of purchases made during the two periods 
under consideration, and then to calculate the level of prices in period 1 relative to period 0 

as the ratio of the period 1 cost of the basket, 1

1

n

i i
i

p q
=
∑ , to the period 0 cost of the 

basket, 0

1

n

i i
i

p q
=
∑ . This fixed–basket approach to the determination of the price index leaves 

open the following question: How exactly is the fixed–basket vector q to be chosen?  

16.13 As time passed, economists and price statisticians demanded a bit more precision 
with respect to the specification of the basket vector q. There are two natural choices for the 
reference basket: the base period 0 product vector q0 or the current period 1 product vector 
q1. These two choices led to the Laspeyres (1871) price index7 PL defined by equation (16.5) 
and the Paasche (1874) price index8 PP defined by equation (16.6):9 
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6Joseph Lowe (1823, Appendix, 95) suggested that the product basket vector q should be updated every five 

years.  Lowe indices will be studied in more detail in Section D.  
7This index was actually introduced and justified by Drobisch (1871a, p. 147) slightly earlier than Laspeyres.  

Laspeyres (1871, p. 305) in fact explicitly acknowledged that Drobisch showed him the way forward. However, 
the contributions of Drobisch have been forgotten for the most part by later writers because Drobisch 
aggressively pushed for the ratio of two unit values as being the best index number formula. While this formula 
has some excellent properties, if all the n products being compared have the same unit of measurement, the 
formula is useless when, say, both goods and services are in the index basket.   

8Again, Drobisch (1871b, p. 424) appears to have been the first to explicitly define and justify this formula.  
However, he rejected this formula in favor of his preferred formula, the ratio of unit values, and so again he did 
not get any credit for his early suggestion of the Paasche formula.  

9Note that PL(p0,p1,q0,q1) does not actually depend on q1 , and PP(p0,p1,q0,q1) does not actually depend on q0. 
However, it does no harm to include these vectors, and the notation indicates that the reader is in the realm of 
bilateral index number theory; that is, the prices and quantities for a value aggregate pertaining to two periods 
are being compared. 



 
 

 

16.14 The above formulas can be rewritten in a manner that is more useful for statistical 
agencies. Define the period t revenue share on product i as follows: 

(16.7) 
1

/
n

t t t t t
i i i j j

j
s p q p q

=

≡ ∑ for i = 1,...,n and t = 0,1. 

 
Then, the Laspeyres index equation (16.5), can be rewritten as follows:10 
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using definitions in equation (16.7). 
 
Thus, the Laspeyres price index PL can be written as a base–period revenue share weighted 
arithmetic average of the n price ratios, pi

1/pi
0 . The Laspeyres formula (until the very recent 

past) has been widely used as the intellectual base for XMPIs around the world. To 
implement it, a statistical agency needs only to collect information on trade shares sn

0 for the 
index domain of definition for the base period 0 and then collect information on item prices 
alone on an ongoing basis. Thus, the Laspeyres XMPI can be produced on a timely basis 
without current period quantity information.  
 
16.15 The Paasche index can also be written in revenue share and price ratio form as 
follows:11 
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using definitions in equation (16.7). 
 
                                                 

10This method of rewriting the Laspeyres index (or any fixed–basket index) as a share weighted arithmetic 
average of price ratios is due to Irving Fisher (1897, p. 517; 1911, p. 397; 1922, p. 51) and Walsh (1901, p. 506; 
1921a, p. 92). 

11This method of rewriting the Paasche index (or any fixed–basket index) as a share weighted harmonic 
average of the price ratios is due to Walsh (1901, p. 511; 1921a, p. 93) and, Irving Fisher (1911,pp. 397–98).  



 
 

 

Thus, the Paasche price index PP can be written as a period 1 (or current period) trade share 
weighted harmonic average of the n item price ratios pi

1/pi
0.12 The lack of information on 

current–period quantities prevents statistical agencies from producing Paasche indices on a 
timely basis. 
 
16.16 The quantity index that corresponds to the Laspeyres price index using the product 
test, equation (16.3) is the Paasche quantity index; that is, if P in equation (16.4) is replaced 
by PL defined by equation (16.5), then the following quantity index is obtained: 

(16.10) 
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Note that QP is the value of the period 1 quantity vector valued at the period 1 prices, 1 1
n

i i
i 1

p q
=
∑ , 

divided by the (hypothetical) value of the period 0 quantity vector valued at the period 1 

prices, 1 0
n

i i
i 1

p q
=
∑ . Thus, the period 0 and 1 quantity vectors are valued at the same set of prices, 

the current–period prices, p1. 
 
16.17 The quantity index that corresponds to the Paasche price index using the product test, 
equation (16.3), is the Laspeyres quantity index; that is, if P in equation (16.4) is replaced by 
PP defined by equation (16.6), then the following quantity index is obtained: 
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Note that QL is the (hypothetical) value of the period 1 quantity vector valued at the period 0 

prices, 0 1
n

i i
i 1

p q
=
∑ , divided by the value of the period 0 quantity vector valued at the period 0 

prices, 0 0
n

i i
i 1

p q
=
∑ . Thus, the period 0 and 1 quantity vectors are valued at the same set of prices, 

the base–period prices, p0. 
 
16.18 The problem with the Laspeyres and Paasche index number formulas is that they are 
equally plausible, but, in general, they will give different answers. For most purposes, it is 

                                                 
12Note that the derivation in equation (16.9) shows how harmonic averages arise in index number theory in a 

very natural way. 



 
 

 

not satisfactory for the statistical agency to provide two answers to this question:13 what is the 
best overall summary measure of price change for the value aggregate over the two periods 
in question? Thus, in the following section, it is considered how “best” averages of these two 
estimates of price change can be constructed. Before doing this, we ask what is the normal 
relationship between the Paasche and Laspeyres indices? Under normal economic conditions, 
when the price ratios pertaining to the two situations under consideration are negatively 
correlated with the corresponding quantity ratios, it can be shown that the Laspeyres price 
index will be larger than the corresponding Paasche index.14 In Appendix 15.1, a precise 
statement of this result is presented.15 This divergence between PL and PP suggests that if a 
single estimate for the price change between the two periods is required, then some sort of 
evenly weighted average of the two indices should be taken as the final estimate of price 
change between periods 0 and 1.0. This strategy will be pursued in the following section. For 
indices such as the CPI, PPI, and services XMPIs, statistical agencies will not have 
information on current revenue weights and, hence, averages of Paasche and Laspeyres 
indices can be produced only on a delayed basis (perhaps using national accounts 
information) or not at all. Reasonably timely Paasche indices for the goods XMPIs, however, 
may be feasible because monthly trade weights are available on a timely basis in many 
countries.16 

C.   Symmetric Averages of Fixed–Basket Price Indices 

C.1 Fisher index as an average of the Paasche and Laspeyres indices 

16.19 As was mentioned in the previous paragraph, since the Paasche and Laspeyres price 
indices are equally plausible but often give different estimates of the amount of aggregate 
price change between periods 0 and 1, it is useful to consider taking an evenly weighted 

                                                 
13In principle, instead of averaging the Paasche and Laspeyres indices, the statistical agency could think of 

providing both (the Paasche index on a delayed basis). This suggestion would lead to a matrix of price 
comparisons between every pair of periods instead of a time series of comparisons. Walsh (1901, p. 425) noted 
this possibility: “In fact, if we use such direct comparisons at all, we ought to use all possible ones.” 

14Peter Hill (1993, p. 383) summarized this inequality as follows: “It can be shown that relationship (13) [that 
is, that PL is greater than PP] holds whenever the price and quantity relatives (weighted by values) are 
negatively correlated. Such negative correlation is to be expected for price takers who react to changes in 
relative prices by substituting goods and services that have become relatively less expensive for those that have 
become relatively more expensive. In the vast majority of situations covered by index numbers, the price and 
quantity relatives turn out to be negatively correlated so that Laspeyres indices tend systematically to record 
greater increases than Paasche with the gap between them tending to widen with time.” 

15There is another way to see why PP will often be less than PL. If the period 0 revenue shares si
0 are exactly 

equal to the corresponding period 1 revenue shares si
1, then by Schlömilch's (1858) Inequality (see Hardy, 

Littlewood, and Polyá, 1934, p. 26), it can be shown that a weighted harmonic mean of n numbers is equal to or 
less than the corresponding arithmetic mean of the n numbers and the inequality is strict if the n numbers are not 
all equal. If revenue shares are approximately constant across periods, then it follows that PP will usually be less 
than PL under these conditions; see Section D.3. 

16 However, the monthly goods trade figures from customs services likely will be subject to revision, so, by 
implication, the Paasche goods trade price index also would be subject to revision, at least in principle. If 
revisions to trade by commodity and destination/source country usually are small, these revisions will be very 
small, however. 



 
 

 

average of these fixed basket–price indices as a single estimator of price change between the 
two periods. Examples of such symmetric averages17 are the arithmetic mean, which leads to 
the Drobisch (1871b, p. 425) Sidgwick (1883, p. 68) Bowley (1901, p. 227)18 index, PD ≡ 
(1/2)PL + (1/2)PP, and the geometric mean, which leads to the Irving Fisher19 (1922) ideal 
index, PF, defined as 

(16.12) { }1/ 20 1 0 1 0 1 0 1 0 1 0 1( , , , ) ( , , , ) ( , , , ) .F L PP p p q q P p p q q P p p q q≡  
 
At this point, the fixed–basket approach to index number theory is transformed into the test 
approach to index number theory; that is, in order to determine which of these fixed–basket 
indices or which averages of them might be best, desirable criteria or tests or properties are 
needed for the price index. This topic will be pursued in more detail in the next chapter, but 
an introduction to the test approach is provided in the present section because a test is used to 
determine which average of the Paasche and Laspeyres indices might be best. 
 
16.20 What is the best symmetric average of PL and PP to use as a point estimate for the 
theoretical cost-of-living index? It is very desirable for a price index formula that depends on 
the price and quantity vectors pertaining to the two periods under consideration to satisfy the 
time reversal test.20 An index number formula P(p0,p1,q0,q1) satisfies this test if 

(16.13) 1 0 1 0 0 1 0 1 1  ;P(p , p ,q ,q )  /  P(p , p ,q ,q ) =   
 
that is., if the period 0 and period 1 price and quantity data are interchanged and the index 
number formula is evaluated, then this new index P(p1,p0,q1,q0) is equal to the reciprocal of 
the original index P(p0,p1,q0,q1). This is a property that is satisfied by a single price ratio, and 
it seems desirable that the measure of aggregate price change should also satisfy this property 
so that it does not matter which period is chosen as the base period. Put another way, the 
index number comparison between any two points of time should not depend on the choice 
of which period we regard as the base period: if the other period is chosen as the base period, 
                                                 

17For a discussion of the properties of symmetric averages, see Diewert (1993c).  Formally, an average m(a,b) 
of two numbers a and b is symmetric if m(a,b) = m(b,a). In other words, the numbers a and b are treated in the 
same manner in the average.  An example of a nonsymmetric average of a and b is (1/4)a + (3/4)b. In general, 
Walsh (1901, p. 105) argued for a symmetric treatment if the two periods (or countries) under consideration 
were to be given equal importance.  

18Walsh (1901, p. 99) also suggested this index. See Diewert (1993a, p. 36) for additional references to the 
early history of index number theory. 

19Bowley (1899, p. 641) appears to have been the first to suggest the use of this index. Walsh (1901, pp. 428–
29) also suggested this index while commenting on the big differences between the Laspeyres and Paasche 
indices in one of his numerical examples: “The figures in columns (2) [Laspeyres] and (3) [Paasche] are, singly, 
extravagant and absurd.  But there is order in their extravagance; for the nearness of their means to the more 
truthful results shows that they straddle the true course, the one varying on the one side about as the other does 
on the other.”  

20See Diewert (1992a, p. 218) for early references to this test. If we want the price index to have the same 
property as a single price ratio, then it is important to satisfy the time reversal test. However, other points of 
view are possible.  For example, we may want to use our price index for compensation purposes, in which case 
satisfaction of the time reversal test may not be so important. 



 
 

 

then the new index number should simply equal the reciprocal of the original index. It should 
be noted that the Laspeyres and Paasche price indices do not satisfy this time reversal 
property.  
 
16.21 Having defined what it means for a price index P to satisfy the time reversal test, 
then it is possible to establish the following result:21 the Fisher ideal price index defined by 
equation (16.12) above is the only index that is a homogeneous22 symmetric average of the 
Laspeyres and Paasche price indices, PL and PP, and satisfies the time reversal test in 
equation (16.13) above. Thus the Fisher ideal price index emerges as perhaps the best evenly 
weighted average of the Paasche and Laspeyres price indices. 

16.22  It is interesting to note that this symmetric basket approach to index number theory 
dates back to one of the early pioneers of index number theory, Arthur L. Bowley, as the 
following quotations indicate: 

If [the Paasche index] and [the Laspeyres index] lie close together there is no further difficulty; if they 
differ by much they may be regarded as inferior and superior limits of the index number, which may be 
estimated as their arithmetic mean … as a first approximation. (Arthur L. Bowley, 1901, p. 227) 

 
When estimating the factor necessary for the correction of a change found in money wages to obtain 
the change in real wages, statisticians have not been content to follow Method II only [to calculate a 
Laspeyres price index], but have worked the problem backwards [to calculate a Paasche price index] as 
well as forwards. … They have then taken the arithmetic, geometric or harmonic mean of the two 
numbers so found. (Arthur L. Bowley, 1919, p. 348)23 

  
16.23 The quantity index that corresponds to the Fisher price index using the product test, 
equation (16.3), is the Fisher quantity index; that is, if P in equation (16.4) is replaced by PF 
defined by (16.12), the following quantity index is obtained: 

(16.14) { }1/ 20 1 0 1 0 1 0 1 0 1 0 1( , , , ) ( , , , ) ( , , , ) .F L PQ p p q q Q p p q q Q p p q q≡  

 
Thus, the Fisher quantity index is equal to the square root of the product of the Laspeyres and 
Paasche quantity indices. It should also be noted that QF(p0,p1,q0,q1) = PF(q0,q1,p0,p1); that is, 
if the role of prices and quantities is interchanged in the Fisher price index formula, then the 
Fisher quantity index is obtained.24 
 
16.24 Rather than take a symmetric average of the two basic fixed basket price indices 
pertaining to two situations, PL and PP, it is also possible to return to Lowe’s basic 

                                                 
21See Diewert (1997, p. 138). 
22An average or mean of two numbers a and b, m(a,b), is homogeneous  if when both numbers a and b are 

multiplied by a positive number λ, then the mean is also multiplied by λ; that is, m satisfies the following 
property:  m(λa,λb) = λm(a,b). 

23Irving Fisher (1911, pp. 417–18; 1922) also considered the arithmetic, geometric, and harmonic averages of 
the Paasche and Laspeyres indices. 

24Irving Fisher (1922, p. 72) said that P and Q satisfied the factor reversal test if Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) 
and P and Q satisfied the product test in equation (16.3) as well. 



 
 

 

formulation and choose the basket vector q to be a symmetric average of the base and current 
period basket vectors, q0 and q1. The following subsection pursues this approach to index 
number theory. 

C.2 Walsh index and theory of “pure” price index 

16.25 Price statisticians tend to be very comfortable with a concept of the price index based 
on pricing out a constant representative basket of products, q ≡ (q1,q2,…,qn), at the prices of 
period 0 and 1, p0 ≡ (p1

0,p2
0,…,pn

0) and p1 ≡ (p1
1,p2

1,…,pn
1), respectively. Price statisticians 

refer to this type of index as a fixed–basket index or a pure price index25, and it corresponds 
to Knibbs’ (1924, p. 43) unequivocal price index.26 Since Joseph Lowe (1823) was the first 
person to describe systematically this type of index, it is referred to as a Lowe index. Thus, 
the general functional form for the Lowe price index is 

 

(16.15) 0 1 1 0 1 0

1 1 1

( , , ) / ( / ),
n n n

Lo i i i i i i i
i i i

P p p q p q p q s p p
= = =

≡ =∑ ∑ ∑  

 
where the (hypothetical) hybrid revenue shares si 27 corresponding to the quantity weights 
vector q are defined by 
 

(16.16) 0 0

1
/

n

i i i j j
j

s p q p q for i 1,2,...,n.
=

≡ =∑  

 
16.26 The main reason why price statisticians might prefer a member of the family of 
Lowe or fixed–basket price indices defined by equation (16.15) is that the fixed-basket 
concept is easy to explain to the public. Note that the Laspeyres and Paasche indices are 
special cases of the pure price concept if we choose q = q0 (which leads to the Laspeyres 

                                                 
25See Section 7 in Diewert (2001).    
26“Suppose, however, that for each commodity, Q′ = Q, the fraction, ∑(P′Q) / ∑(PQ), viz., the ratio of 

aggregate value for the second unit-period to the aggregate value for the first unit-period is no longer merely a 
ratio of totals, it also shows unequivocally the effect of the change in price. Thus, it is an unequivocal price 
index for the quantitatively unchanged complex of commodities, A, B, C, et cetera. 

     “It is obvious that if the quantities were different on the two occasions, and if at the same time the prices 
had been unchanged, the preceding formula would become ∑(PQ′) / ∑(PQ). It would still be the ratio of the 
aggregate value for the second unit-period to the aggregate value for the first unit-period.  But it would be also 
more than this.  It would show in a generalized way the ratio of the quantities on the two occasions. Thus it is an 
unequivocal quantity index for the complex of commodities, unchanged as to price and differing only as to 
quantity. 

     “Let it be noted that the mere algebraic form of these expressions shows at once the logic of the problem of 
finding these two indices is identical”.  (Sir George H. Knibbs, (1924, pp. 43–44)). 

27Irving Fisher (1922, p. 53) used the terminology “weighted by a hybrid value,” while Walsh (1932, p. 657) 
used the term “hybrid weights.” 



 
 

 

index) or if we choose q = q1 (which leads to the Paasche index).28 The practical problem of 
picking q remains to be resolved, and that is the problem addressed in this section. 

30. It should be noted that Walsh (1901, p. 105; 1921a) also saw the price index number 
problem in the above framework: 
 

Commodities are to be weighted according to their importance, or their full values. But the problem of 
axiometry always involves at least two periods. There is a first period, and there is a second period 
which is compared with it. Price variations have taken place between the two, and these are to be 
averaged to get the amount of their variation as a whole. But the weights of the commodities at the 
second period are apt to be different from their weights at the first period. Which weights, then, are the 
right ones—those of the first period? Or those of the second? Or should there be a combination of the 
two sets? There is no reason for preferring either the first or the second. Then the combination of both 
would seem to be the proper answer. And this combination itself involves an averaging of the weights 
of the two periods. Correa Moylan Walsh, 1921a, p. 90) 

 
Walsh’s suggestion will be followed, and thus the ith quantity weight, qi, is restricted to be an 
average or mean of the base–period quantity qi

0 and the current–period quantity for product i 
qi

1, say m(qi
0,qi

1), for i = 1,2,…,n.29 Under this assumption, the Lowe price index (16.15) 
becomes 
 

(16.17)
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16.27 In order to determine the functional form for the mean function m, it is necessary to 
impose some tests or axioms on the pure price index defined by equation (16.17). As in 
Section C.1, we ask that PLo satisfy the time reversal test, equation (16.13) above. Under this 
hypothesis, it is immediately obvious that the mean function m must be a symmetric mean30; 
that is, m must satisfy the following property: m(a,b) = m(b,a) for all a > 0 and b > 0. This 
assumption still does not pin down the functional form for the pure price index defined by 
equation (16.17) above. For example, the function m(a,b) could be the arithmetic mean, 
(1/2)a + (1/2)b, in which case equation (16.17) reduces to the Marshall (1887) Edgeworth 
(1925) price index PME, which was the pure price index preferred by Knibbs (1924, p. 56): 

                                                 
28Note that the ith share defined by equation (16.16) in this case is the hybrid share 0 1 0 1

1

n

i i i i i ,
i

s p q p q
=

= Σ  which 

uses the prices of period 0 and the quantities of period 1. 
29Note that the mean function m(qi

0,qi
1) has been chosen to be the same for each item i.  It is assumed that 

m(a,b) has the following two properties: m(a,b) is a positive and continuous function, defined for all positive 
numbers a and b, and m(a,a) = a for all a > 0. 

30For more on symmetric means, see Diewert (1993c, p. 361). 



 
 

 

(16.18) 
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16.28 On the other hand, the function m(a,b) could be the geometric mean, (ab)1/2, in which 
case equation (16.17) reduces to the Walsh (1901, p. 398; 1921a, p. 97) price index, PW:

31 

 

(16.19) 
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16.29 There are many other possibilities for the mean function m, including the mean of 
order r, [(1/2)ar + (1/2)br ]1/r for r ≠ 0. To completely determine the functional form for the 
pure price index PLo, it is necessary to impose at least one additional test or axiom on 
PLo(p0,p1,q0,q1). 

16.30 There is a potential problem with the use of the Edgeworth–Marshall price index, 
equation (16.18), that has been noticed in the context of using the formula to make 
international comparisons of prices. If the price levels of a very large country are compared 
with the price levels of a small country using equation (16.18), then the quantity vector of the 
large country may totally overwhelm the influence of the quantity vector corresponding to 
the small country.32 In technical terms, the Edgeworth–Marshall formula is not homogeneous 
of degree 0 in the components of both q0 and q1. To prevent this problem from occurring in 
the use of the pure price index PK(p0,p1,q0,q1) defined by equation (16.17), it is asked that PLo 
satisfy the following invariance to proportional changes in current quantities test:33 

(16.20) 0 1 0 1 0 1 0 1 0 1 0 1( , , , ) ( , , , ) for all , , , and all 0.Lo LoP p p q q P p p q q p p q qλ = λ >  
 
The two tests, the time reversal test in equation (16.13) and the invariance test in equation 
(16.20), enable one to determine the precise functional form for the pure price index PLo 

                                                 
31Walsh endorsed PW as being the best index number formula: “We have seen reason to believe formula 6 

better than formula 7. Perhaps formula 9 is the best of the rest, but between it and Nos. 6 and 8 it would be 
difficult to decide with assurance” (C.M. Walsh, 1921a, p. 103). His formula 6 is PW defined by equation 
(16.19) and his 9 is the Fisher ideal defined by equation (16.12) above. The Walsh quantity index, 
QW(p0,p1,q0,q1),  is defined as PW(q0,q1,p0,p1); that is prices and quantities in equation (16.19) are interchanged.  
If the Walsh quantity index is used to deflate the value ratio, an implicit price index is obtained, which is 
Walsh’s formula 8. 

32This is not likely to be a severe problem in the time–series context where the change in quantity vectors 
going from one period to the next is small. 

33This is the terminology used by Diewert (1992a, p. 216). Vogt (1980) was the first to propose this test.  



 
 

 

defined by equation (16.17) above: the pure price index PK must be the Walsh index PW 
defined by equation (16.19).34 
 
16.31 To be of practical use by statistical agencies, an index number formula must be able 
to be expressed as a function of the base–period revenue shares, si

0; the current–period 
revenue shares, si

1; and the n price ratios, pi
1/pi

0. The Walsh price index defined by equation 
(16.19) above can be rewritten in this format: 
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C.3 Conclusion 

16.32 The approach taken to index number theory in this section was to consider averages 
of various fixed–basket price indices. The first approach was to take an evenhanded average 
of the two primary fixed–basket indices: the Laspeyres and Paasche price indices. These two 
primary indices are based on pricing out the baskets that pertain to the two periods (or 
locations) under consideration. Taking an average of them led to the Fisher ideal price index 
PF defined by equation (16.12) above. The second approach was to average the basket 
quantity weights and then price out this average basket at the prices pertaining to the two 
situations under consideration. This approach led to the Walsh price index PW defined by 
equation (16.19) above. Both these indices can be written as a function of the base–period 
revenue shares, si

0; the current period revenue shares, si
1; and the n price ratios, pi

1/pi
0. 

Assuming that the statistical agency has information on these three sets of variables, which 
index should be used? Experience with normal time–series data has shown that these two 
indices will not differ substantially, and thus it is a matter of choice which of these indices is 
used in practice.35 Both these indices are examples of superlative indices, which will be 

                                                 
34See Section 7 in Diewert (2001).  
35Diewert (1978, pp. 887–89) showed that these two indices will approximate each other to the second order 

around an equal price and quantity point. Thus, for normal time-series data where prices and quantities do not 
change much going from the base period to the current period, the indices will approximate each other quite 
closely.   



 
 

 

defined in Chapter 18. However, note that both these indices treat the data pertaining to the 
two situations in a symmetric manner. Hill36 commented on superlative price indices and the 
importance of a symmetric treatment of the data as follows: 

Thus economic theory suggests that, in general, a symmetric index that assigns equal weight to the two 
situations being compared is to be preferred to either the Laspeyres or Paasche indices on their own. 
The precise choice of superlative index—whether Fisher, Törnqvist or other superlative index—may 
be of only secondary importance as all the symmetric indices are likely to approximate each other, and 
the underlying theoretic index fairly closely, at least when the index number spread between the 
Laspeyres and Paasche is not very great. ( Peter Hill, 1993, p. 384) 

 
D.   Annual Weights and Monthly Price Indices 

D.1 Lowe index with monthly prices and annual base-year quantities 

16.33 It is now necessary to discuss a major practical problem with the theory of basket-
type indices. Up to now, it has been assumed that the quantity vector q ≡ (q1,q2,…,qn) that 
appeared in the definition of the Lowe index, PLo(p0,p1,q) defined by equation (16.15), is 
either the base-period quantity vector q0 or the current period quantity vector q1 or an average 
of the two. In fact, in terms of actual statistical agency practice, the quantity vector q is 
usually taken to be an annual quantity vector that refers to a base year b say, that before the 
base period for the prices, period 0. Typically, a statistical agency will produce XMPIs at a 
monthly or quarterly frequency but, for the sake of definiteness, a monthly frequency will be 
assumed in what follows. Thus, a typical price index will have the form PLo(p0,pt,qb), where 
p0 is the price vector pertaining to the base-period month for prices, month 0, pt is the price 
vector pertaining to the current-period month for prices, month t, say, and qb is a reference 
basket quantity vector that refers to the base year b, which is equal to or before month 0.37 
Note that this Lowe index PLo(p0,pt,qb) is not a true Laspeyres index (because the annual 
quantity vector qb is not equal to the monthly quantity vector q0 in general).38 

16.34 The question is this: why do statistical agencies not pick the reference quantity 
vector q in the Lowe formula to be the monthly quantity vector q0 that pertains to 
transactions in month 0 (so that the index would reduce to an ordinary Laspeyres price 
index)? There are two main reasons: 

• Most economies are subject to seasonal fluctuations, and so picking the quantity vector of 
month 0 as the reference quantity vector for all months of the year would not be 
representative of transactions made throughout the year. 

• Monthly household quantity or revenue weights are usually collected by the statistical 
agency using an establishment survey with a relatively small sample. Hence, the resulting 

                                                 
36See also Peter Hill (1988). 
37Month 0 is called the price reference period, and year b is called the weight reference period. 
38Triplett (1981, p. 12) defined the Lowe index, calling it a Laspeyres index, and calling the index that has the 

weight reference period equal to the price reference period a pure Laspeyres index. Triplett also noted the 
hybrid share representation for the Lowe index defined by equation (16.15) and equation (16.16). Triplett noted 
that the ratio of two Lowe indices using the same quantity weights was also a Lowe index. 



 
 

 

weights are usually subject to very large sampling errors, and so standard practice is to 
average these monthly revenue or quantity weights over an entire year (or in some cases, 
over several years), in an attempt to reduce these sampling errors. In other instances, 
where an establishment census is used, the reported revenue weights are for an annual 
period. 

 
The index number problems that are caused by seasonal monthly weights will be studied in 
more detail in Chapter 23. For now, it can be argued that the use of annual weights in a 
monthly index number formula is simply a method for dealing with the seasonality 
problem.39 
 
16.35 One problem with using annual weights corresponding to a perhaps distant year in 
the context of monthly XMPIs must be noted at this point. If there are systematic (but 
divergent) trends in product prices, and consumers or businesses increase their purchases of 
products that decline (relatively) in price and decrease their purchases of products that 
increase (relatively) in price, then the use of distant quantity weights will tend to lead to an 
upward bias in this Lowe index compared with one that used more current weights, as will be 
shown below. This observation suggests that statistical agencies should get up-to-date 
weights on an ongoing basis. 

16.36 It is useful to explain how the annual quantity vector qb could be obtained from 
monthly revenues on each product during the chosen base year b. Let the month m revenue of 
the reference population in the base year b for product i be vi

b,m , and let the corresponding 
price and quantity be pi

b,m and qi
b,m , respectively. Value, price, and quantity for each product 

are related by the following equations: 

(16.22) , , , ;b m b m b m
i i iv p q= i = 1,...,n; m = 1,...,12. 

 
For each product i, the annual total qi

b can be obtained by price-deflating monthly values and 
summing over months in the base year b as follows: 
 

(16.23) 
,12 12

,
,

1 1
;

b m
b b mi
i ib m

m mi

v
q q

p= =
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where equation (16.22) was used to derive equation (16.23). In practice, the above equations 
will be evaluated using aggregate revenues over closely related products, and the price pi

b,m 
will be the month m price index for this elementary product group i in year b relative to the 
first month of year b. 
 
16.37 For some purposes, it is also useful to have annual prices by product to match up 
with the annual quantities defined by equation (16.23). Following national accounting 
                                                 

39In fact, using the Lowe index PLo(p0,pt,qb) in the context of seasonal products corresponds to Bean and 
Stine’s (1924, p. 31) Type A index number formula. Bean and Stine made three additional suggestions for price 
indices in the context of seasonal products. Their contributions will be evaluated in Chapter 22. 



 
 

 

conventions, a reasonable40 price pi
b to match the annual quantity qi

b is the value of total 
revenue for product i in year b divided by qi

b. Thus, we have  

(16.24)
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where the share of annual revenue on product i in month m of the base year is 
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Thus, the annual base-year price for product i, pi

b, turns out to be a monthly revenue 
weighted harmonic mean of the monthly prices for product i in the base year, pi

b,1, pi
b,2,…, 

pi
b,12. 

 
16.38 Using the annual product prices for the base year defined by equation (16.24), a 
vector of these prices can be defined as pb ≡ [p1

b,…,pn
b]. Using this definition, the Lowe 

index can be expressed as a ratio of two Laspeyres indices where the price vector pb plays the 
role of base-period prices in each of the two Laspeyres indices: 
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40 Hence, these annual product prices are essentially unit-value prices. Under conditions of high inflation, the 
annual prices defined by equation (16.24) may no longer be reasonable or representative of prices during the 
entire base year because the revenues in the final months of the high-inflation year will be somewhat artificially 
blown up by general inflation. Under these conditions, the annual prices and annual product revenue shares 
should be interpreted with caution. For more on dealing with situations where there is high inflation within a 
year, see Peter Hill (1996). 



 
 

 

where the Laspeyres formula PL was defined by equation (16.5) above. Thus, the above 
equation shows that the Lowe monthly price index comparing the prices of month 0 with  
those of month t using the quantities of base year b as weights, PLo(p0,pt,qb), is equal to the 
Laspeyres index that compares the prices of month t with those of year b, PL(pb,pt,qb), 
divided by the Laspeyres index that compares the prices of month 0 with those of year b, 
PL(pb,p0,qb). Note that the Laspeyres index in the numerator can be calculated if the base-year 
product revenue shares, si

b, are known along with the price ratios that compare the prices of 
product i in month t, pi

t, with the corresponding annual average prices in the base year b, pi
b. 

The Laspeyres index in the denominator can be calculated if the base-year product revenue 
shares, si

b, are known along with the price ratios that compare the prices of product i in 
month 0, pi

0, with the corresponding annual average prices in the base year b, pi
b.  

 
16.39 There is another convenient formula for evaluating the Lowe index, PLo(p0,pt,qb), 
uses the hybrid weights formula, equation (16.15). In the present context, the formula 
becomes  
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where the hybrid weights si

0b using the prices of month 0 and the quantities of year b are 
defined by 
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Equation (16.28) shows how the base-year revenues, pi

bqi
b, can be multiplied by the product 

price indices, pi
0/pi

b, to calculate the hybrid shares. 
 
16.40 One additional formula for the Lowe index, PLo(p0,pt,qb), will be exhibited. Note that 
the Laspeyres decomposition of the Lowe index defined by the third line in equation (16.26) 
involves the very long-term price relatives, pi

t/pi
b, that compare the prices in month t, pi

t, with 
the possibly distant base-year prices, pi

b. Further, the hybrid share decomposition of the 
Lowe index defined by the third line in equation (16.27) involves the long-term monthly 
price relatives, pi

t/pi
0, which compare the prices in month t, pi

t, with the base month prices, 
pi

0. Both these formulas are not satisfactory in practice because of the problem of sample 



 
 

 

attrition: each month, a substantial fraction of products disappears from the marketplace and 
thus it is useful to have a formula for updating the previous month’s price index using just 
month-over-month price relatives. In other words, long-term price relatives disappear at a 
rate that is too large in practice to base an index number formula on their use. The Lowe 
index for month t + 1, PLo(p0,pt+1,qb), can be written in terms of the Lowe index for month t, 
PLo(p0,pt,qb), and an updating factor as follows: 
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where the hybrid weights si

tb are defined by 
 

(16.30) 
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Thus, the required updating factor, going from month t to month t + 1, is the chain link 

index ( )1

1

n
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i
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∑ , which uses the hybrid share weights si

tb corresponding to month t and 

base year b. 
 
16.41 The Lowe index PLo(p0,pt,qb) can be regarded as an approximation to the ordinary 
Laspeyres index, PL(p0,pt,q0), that compares the prices of the base month 0, p0, to those of 
month t, pt, using the quantity vector of month 0, q0, as weights. There is a relatively simple 
formula that relates these two indices. To explain this formula, it is first necessary to make a 
few definitions. Define the ith price relative between month 0 and month t as  
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The ordinary Laspeyres price index, going from month 0 to t, can be defined in terms of 
these price relatives as follows: 
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where the month 0 revenue shares si

0 are defined as follows: 
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16.42 Define the ith quantity relative ti as the ratio of the quantity of product i used in the 
base year b, qi

b, to the quantity used in month 0, qi
0, as follows: 

(16.34) 0/ ;b
i i it q q≡ i =1,...,n. 

 
The Laspeyres quantity index, QL(q0,qb,p0), that compares quantities in year b, qb, with the 
corresponding quantities in month 0, q0, using the prices of month 0, p0, as weights can be 
defined as a weighted average of the quantity ratios ti as follows: 
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16.43 Using equation (A16.2.4) in Appendix 2, the relationship between the Lowe index 
PLo(p0,pt,qb) that uses the quantities of year b as weights to compare the prices of month t to 
month 0 and the corresponding ordinary Laspeyres index PL(p0,pt,q0) that uses the quantities 
of month 0 as weights is defined as:  
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Thus, the Lowe price index using the quantities of year b as weights, PLo(p0,pt,qb), is equal to 
the usual Laspeyres index using the quantities of month 0 as weights, PL(p0,pt,q0), plus a 

covariance term 0

1

( )( )
n

i i i
i

r r t t s∗ ∗

=

− −∑  between the price relatives ri ≡ pi 
t/ pi

0 and the quantity 

relatives ti ≡ qi
b / qi

0, divided by the Laspeyres quantity index QL(q0,qb,p0) between month 0 
and base year b.  
 
16.44 Equation (16.36) shows that the Lowe price index will coincide with the Laspeyres 
price index if the covariance or correlation between the month 0 to t price relatives ri ≡ pi

t/pi
0 

and the month 0 to year b quantity relatives ti ≡ qi
b/qi

0 is zero. Note that this covariance will 
be zero under three different sets of conditions: 

• If the month t prices are proportional to the month 0 prices so that all ri = r*, 
• If the base year b quantities are proportional to the month 0 quantities so that all ti = t*, 

and 
• If the distribution of the relative prices ri is independent of the distribution of the relative 

quantities ti. 
 
The first two conditions are unlikely to hold empirically, but the third is possible, at least 
approximately, if purchasers do not systematically change their purchasing habits in response 
to changes in relative prices.  
 
16.45 If this covariance in equation (16.36) is negative, then the Lowe index will be less 
than the Laspeyres, and, finally, if the covariance is positive, then the Lowe index will be 
greater than the Laspeyres index. Although the sign and magnitude of the covariance term is 
ultimately an empirical matter, it is possible to make some reasonable conjectures about its 
likely sign. If the base year b precedes the price reference month 0 and there are long-term 



 
 

 

trends in prices, then it is likely that this covariance is positive, and hence that the Lowe 
index will exceed the corresponding Laspeyres price index;41 that is,  

(16.37) 0 0 0( , , ) ( , , ).t b t
Lo LP p p q P p p q>  

 
To see why this covariance is likely to be positive, suppose that there is a long term upward 
trend in the price of product i so that ri − r* ≡ (pi

t / pi
0) − r* is positive. With normal 

substitution responses,42 qi
t / qi

0 less an average quantity change of this type (t*) is likely to be 
negative, or, upon taking reciprocals, qi

0 / qi
t less an average quantity change of this 

(reciprocal) type is likely to be positive. But if the long-term upward trend in prices has 
persisted back to the base year b, then ti − t* ≡ (qi

b / qi
0) − t* is also likely to be positive. 

Hence, the covariance will be positive under these circumstances. Moreover, the more distant 
is the weight reference year b from the price reference month 0, the bigger the residuals ti − 
t* will likely be and the bigger will be the positive covariance. Similarly, the more distant is 
the current period month t from the base period month 0, the bigger the residuals ri − r* will 
likely be and the bigger will be the positive covariance. Thus, under the assumptions that 
there are long-term trends in prices and normal substitution responses, the Lowe index will 
normally be greater than the corresponding Laspeyres index.  
 
16.46 Define the Paasche index between months 0 and t as follows: 
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As was discussed in Section C.1 above, a reasonable target index to measure the price change 
going from month 0 to t is some sort of symmetric average of the Paasche index PP(p0,pt,qt) 
defined by equation (16.38) and the corresponding Laspeyres index, PL(p0,pt,q0) defined by 
equation (16.32). Adapting equation (A16.1.5) in Appendix 15.1, the relationship between 
the Paasche and Laspeyres indices can be written as follows: 
 

                                                 
41It is also necessary to assume that purchasers have normal substitution effects in response to these long-term 

trends in prices; that is, if a product increases (relatively) in price, its quantity purchased will decline 
(relatively), and if a product decreases relatively in price, its quantity purchased will increase relatively. This 
reflects the normal “market equilibrium” response to changes in supply. 

42Walsh (1901, pp. 281–82) was well aware of substitution effects, as can be seen in the following comment 
which noted the basic problem with a fixed-basket index that uses the quantity weights of a single period: “The 
argument made by the arithmetic averagist supposes that we buy the same quantities of every class at both 
periods in spite of the variation in their prices, which we rarely, if ever, do.  As a rough proposition, we–a 
community–generally spend more on articles that have risen in price and get less of them, and spend less on 
articles that have fallen in price and get more of them.”    
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where the price relatives ri ≡ pi

t / pi
0 are defined by equation (16.31) and their share weighted 

average r* by equation (16.32) and the ui, u* and QL are defined as follows: 
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and the month 0 revenue shares si

0 are defined by equation (16.33). Thus, u* is equal to the 
Laspeyres quantity index between months 0 and t. This means that the Paasche price index 
that uses the quantities of month t as weights, PP(p0,pt,qt), is equal to the usual Laspeyres 
index using the quantities of month 0 as weights, PL(p0,pt,q0), plus a covariance term 

0
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0 and the quantity relatives ui ≡ qi
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0, divided by the Laspeyres quantity index QL(q0,qt,p0) between month 0 and month t.  

 
16.47 Although the sign and magnitude of the covariance term is again an empirical matter, 
it is possible to make a reasonable conjecture about its likely sign. If there are long term 
trends in prices, and purchasers respond normally to price changes in their purchases, then 
it is likely that that this covariance is negative, and hence the Paasche index will be less than 
the corresponding Laspeyres price index; that is,  

(16.42) 0 0 0( , , ) ( , , )t t t
P LP p p q P p p q< . 

 
To see why this covariance is likely to be negative, suppose that there is a long-term upward 
trend in the price of product i43 so that ri − r* ≡ (pi

t / pi
0) − r* is positive. With normal 

substitution responses, qi
t / qi

0 less an average quantity change of this type (u*) is likely to be 
negative. Hence, ui − u* ≡ (qi

t / qi
0) − u* is likely to be negative. Thus, the covariance will be 

negative under these circumstances. Moreover, the more distant is the base month 0 from the 
current month t, the bigger in magnitude the residuals ui − u* will likely be and the bigger in 
magnitude will be the negative covariance.44 Similarly, the more distant is the current-period 
month t from the base period month 0, the bigger the residuals ri − r* will likely be and the 
bigger in magnitude will be the covariance. Thus, under the assumptions that there are long-

                                                 
43The reader can carry through the argument if there is a long-term relative decline in the price of the ith 

product. The argument required to obtain a negative covariance requires that there be some differences in the 
long-term trends in prices; that is, if all prices grow (or fall) at the same rate, we have price proportionality, and 
the covariance will be zero. 

44However, QL = u* may also be growing in magnitude, so the net effect on the divergence between PL and PP 
is ambiguous.  



 
 

 

term trends in prices and normal substitution responses, the Laspeyres index will be greater 
than the corresponding Paasche index, with the divergence likely growing as month t 
becomes more distant from month 0.  
  
16.48 Putting the arguments in the three previous paragraphs together, it can be seen that 
under the assumptions that there are long-term trends in prices and normal substitution 
responses, the Lowe price index between months 0 and t will exceed the corresponding 
Laspeyres price index which in turn will exceed the corresponding Paasche price index; that 
is, under these hypotheses, 

(16.43) 0 0 0 0( , , ) ( , , ) ( , , ).t b t t t
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Thus, if the long-run target price index is an average of the Laspeyres and Paasche indices, it 
can be seen that the Laspeyres index will have an upward bias relative to this target index, 
and the Paasche index will have a downward bias. In addition, if the base year b is prior to 
the price reference month, month 0, then the Lowe index will also have an upward bias 
relative to the Laspeyres index and hence also to the target index. 
 
D.2 Lowe index and midyear indices 

16.49 The discussion in the previous paragraph assumed that the base year b for quantities 
preceded the base month for prices, month 0. However, if the current period month t is quite 
distant from the base month 0, then it is possible to think of the base year b as referring to a 
year that lies between months 0 and t. If the year b does fall between months 0 and t, then the 
Lowe index becomes a midyear index.45 The Lowe midyear index no longer has the upward 
biases indicated by the inequalities in equation (16.43) under the assumption of long-term 
trends in prices and normal substitution responses by quantities.  

16.50 It is now assumed that the base year quantity vector qb corresponds to a year that lies 
between months 0 and t. Under the assumption of long-term trends in prices and normal 
substitution effects so that there are also long-term trends in quantities (in the opposite 
direction to the trends in prices so that if the ith product price is trending up, then the 
corresponding ith quantity is trending down), it is likely that the intermediate-year quantity 
vector will lie between the monthly quantity vectors q0 and qt. The midyear Lowe index, 

                                                 
45This concept can be traced to Peter Hill (1998, p. 46): “When inflation has to be measured over a specified 

sequence of years, such as a decade, a pragmatic solution to the problems raised above would be to take the 
middle year as the base year.  This can be justified on the grounds that the basket of goods and services 
purchased in the middle year is likely to be much more representative of the pattern of consumption over the 
decade as a whole than baskets purchased in either the first or the last years. Moreover, choosing a more 
representative basket will also tend to reduce, or even eliminate, any bias in the rate of inflation over the decade 
as a whole as compared with the increase in the CoL index.” Thus, in addition to introducing the concept of a 
midyear index, Hill also introduced the idea of representativity bias. For additional material on midyear indices, 
see Schultz (1999) and Okamoto (2001). Note that the midyear index concept could be viewed as a close 
competitor to Walsh’s (1901, p. 431) multiyear fixed-basket index, where the quantity vector was chosen to be 
an arithmetic or geometric average of the quantity vectors in the period. 



 
 

 

PLo(p0,pt,qb), and the Laspeyres index going from month 0 to t, PL(p0,pt,q0), will still satisfy 
the exact relationship given by equation (16.36). Thus, PLo(p0,pt,qb) will equal PL(p0,pt,q0) 

plus the covariance term 0 0 0
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− −∑ , where QL(q0,qb,p0) is the Laspeyres 

quantity index going from month 0 to t. This covariance term is likely to be negative, so that  
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To see why this covariance is likely to be negative, suppose that there is a long-term upward 
trend in the price of product i so that ri − r* ≡ (pi

t / pi
0) − r* is positive. With normal 

substitution responses, qi will tend to decrease relatively over time, and since qi
b is assumed 

to be between qi
0 and qi

t, qi
b/qi

0 less an average quantity change of this type, r* is likely to be 
negative. Hence ui − u* ≡ (qi

b / qi
0) − t* is likely to be negative. Thus, the covariance is likely 

to be negative under these circumstances. Under the assumptions that the quantity base year 
falls between months 0 and t and that there are long-term trends in prices and normal 
substitution responses, the Laspeyres index will normally be larger than the corresponding 
Lowe midyear index, with the divergence likely growing as month t becomes more distant 
from month 0.  
 
16.51 It can also be seen that under the above assumptions, the midyear Lowe index is 
likely to be greater than the Paasche index between months 0 and t; that is, 

(16.45) 0 0( , , ) ( , , ).t b t t
Lo PP p p q P p p q>  

  
To see why the above inequality is likely to hold, think of qb starting at the month 0 quantity 
vector q0 and then trending smoothly to the month t quantity vector qt. When qb = q0, the 
Lowe index PLo(p0,pt,qb) becomes the Laspeyres index PL(p0,pt,q0). When qb = qt, the Lowe 
index PLo(p0,pt,qb) becomes the Paasche index PP(p0,pt,qt). Under the assumption of trending 
prices and normal substitution responses to these trending prices, it was shown earlier that 
the Paasche index will be less than the corresponding Laspeyres price index; that is, that 
PP(p0,pt,qt) was less than PL(p0,pt,q0); recall equation (16.42). Thus, under the assumption of 
smoothly trending prices and quantities between months 0 and t, and assuming that qb is 
between q0 and qt, we will have 
 
(16.46) 0 0 0 0( , , ) ( , , ) ( , , ).t t t b t

P Lo LP p p q P p p q P p p q< <  
  
Thus, if the base year for the Lowe index is chosen to be in between the base month for the 
prices, month 0, and the current month for prices, month t, and there are trends in prices with 
corresponding trends in quantities that correspond to normal substitution effects, then the 
resulting Lowe index is likely to lie between the Paasche and Laspeyres indices going from 
months 0 to t. If the trends in prices and quantities are smooth, then choosing the base year 
halfway between periods 0 and t should give a Lowe index that is approximately halfway 
between the Paasche and Laspeyres indices and hence will be very close to an ideal target 
index between months 0 and t. This basic idea has been implemented by Okamoto (2001) 
using Japanese consumer data and he found that the resulting midyear indices approximated 
the corresponding Fisher ideal indices very closely. 



 
 

 

 
16.52 It should be noted that these midyear indices can be computed only on a 
retrospective basis; that is, they cannot be calculated in a timely fashion as can Lowe indices 
that use a base year before month 0. Thus, midyear indices cannot be used to replace the 
more timely Lowe indices. However, these timely Lowe indices are likely to have an upward 
bias even bigger than the usual Laspeyres upward bias compared with an ideal target index, 
which was taken to be an average of the Paasche and Laspeyres indices.  

16.53 All of the inequalities derived in this section rest on the assumption of long-term 
trends in prices (and corresponding economic responses in quantities). If there are no 
systematic long-run trends in prices and only random fluctuations around a common trend in 
all prices, then the above inequalities are not valid and the Lowe index using a prior base 
year will probably provide a perfectly adequate approximation to both the Paasche and 
Laspeyres indices. However, there are some reasons for believing that some long-run trends 
in prices exist:  

(i)  The computer chip revolution of the past 40 years has led to strong downward trends in 
the prices of products that use these chips intensively. As new uses for chips are 
developed, the share of products that are chip-intensive has grown, which implies that 
what used to be a relatively minor problem has become a more major problem. 

(ii)  Other major scientific advances have had similar effects. For example, the invention of 
fiber-optic cable (and lasers) has led to a downward trend in telecommunications prices 
as obsolete technologies based on copper wire are gradually replaced. 

(iii)  Since the end of World War II, a series of international trade agreements that have 
dramatically reduced tariffs around the world. These reductions, combined with 
improvements in transportation technologies, have led to a rapid growth of international 
trade and remarkable improvements in international specialization. Manufacturing 
activities in the more developed economies have gradually been outsourced to lower-
wage countries, leading to deflation in goods prices in most countries. However, many 
services cannot be readily outsourced,46 and so on average the price of services trends 
upward while the price of goods trends downward. 

(iv)  At the microeconomic level, there are tremendous differences in growth rates of firms. 
Successful firms expand their scale, lower their costs, and cause less successful 
competitors to wither away with their higher prices and lower volumes. This leads to a 
systematic negative correlation between changes in item prices and the corresponding 
changes in item volumes that can be very large. 

 
Thus, there is some a priori basis for assuming long-run divergent trends in prices and hence 
some basis for concern that a Lowe index that uses a base year for quantity weights that is 
prior to the base month for prices may be upward biased, compared to a more ideal target 
index.  
 

                                                 
46However some services can be internationally outsourced; for example, call centers, computer programming, 

and airline maintenance. 



 
 

 

D.3 Young index 

16.54 Recall the definitions for the base-year quantities, qi
b, and the base-year prices, pi

b, 
given by equation (16.23) and equation (16.24) above. The base-year revenue shares can be 
defined in the usual way as follows:  
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Define the vector of base-year revenue shares in the usual way as sb ≡ [s1

b,…,sn
b]. These 

base-year revenue shares were used to provide an alternative formula for the base year b 
Lowe price index going from month 0 to t defined in equation (16.26) as PLo(p0,pt,qb) 
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∑ ∑ . Rather than using this index as their short-run target index, 

many statistical agencies use the following closely related index: 
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This type of index was first defined by the English economist Arthur Young (1812).47 Note 
that there is a change in focus when the Young index is used compared with the indices 
proposed earlier in this chapter. Up to this point, the indices proposed have been of the fixed-
basket type (or averages of such indices), where a product basket that is somehow 
representative for the two periods, being compared is chosen and then “purchased” at the 
prices of the two periods and the index is taken to be the ratio of these two costs. On the 
other hand, for the Young index, one instead chooses representative revenue shares that 
pertain to the two periods under consideration and then uses these shares to calculate the 
overall index as a share-weighted average of the individual price ratios, pi

t / pi
0. Note that this 

share-weighted average of price ratios view of index number theory is a bit different from the 
view taken at the beginning of this chapter, which viewed the index number problem as the 
problem of decomposing a value ratio into the product of two terms, one of which expresses 
the amount of price change between the two periods and the other that expresses the amount 
of quantity change.48  
                                                 

47Walsh (1901, p. 536; 1932, p. 657) attributed this formula to Young. 
48Irving Fisher’s 1922 book is famous for developing the value ratio decomposition approach to index number 

theory, but his introductory chapters took the share-weighted average point of view: “An index number of 
prices, then shows the average percentage change of prices from one point of time to another”  (1922, p. 3).  
Fisher went on to note the importance of economic weighting: “The preceding calculation treats all the 
commodities as equally important; consequently, the average was called ‘simple’. If one commodity is more 
important than another, we may treat the more important as though it were two or three commodities, thus 
giving it two or three times as much ‘weight’ as the other commodity” (1922, p. 6). Walsh (1901, pp. 430–31) 
considered both approaches: “We can either (1) draw some average of the total money values of the classes 
during an epoch of years, and with weighting so determined employ the geometric average of the price 
variations [ratios]; or (2) draw some average of the mass quantities of the classes during the epoch, and apply to 
(continued) 
 



 
 

 

 
16.55 Statistical agencies sometimes regard the Young index defined above as an 
approximation to the Laspeyres price index PL(p0,pt,q0). Hence, it is of interest to see how the 
two indices compare. Defining the long-term monthly price relatives going from month 0 to t 
as ri ≡ pi

t/pi
0 and using equations (16.32) and (16.48), 
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≡ =∑ . Thus, the Young index 

PY(p0,pt,sb) is equal to the Laspeyres index PL(p0,pt,q0) plus the covariance between the 
difference in the annual shares pertaining to year b and the month 0 shares, si

b − si
0, and the 

deviations of the relative prices from their mean, ri − r*.  
 
16.56 It is no longer possible to guess the likely sign of the covariance term. The question 
is no longer whether the quantity demanded goes down as the price of product i goes up (the 
answer to this question is usually yes) but does the share of revenue go down as the price of 
product i goes up? The answer depends on the elasticity of demand for the product. However, 
let us provisionally assume that there are long-run trends in product prices and if the trend in 
prices for product i is above the mean, then the revenue share for the product trends down 
(and vice versa). Thus, we are assuming high elasticities or very strong substitution effects. 
Assuming also that the base year b is before month 0, then under these conditions, suppose 
that there is a long-term upward trend in the price of product i so that ri − r* ≡ (pi

t / pi
0) − r* 

is positive. With the assumed very elastic purchaser substitution responses, si will tend to 
decrease relatively over time. Since si

b is assumed to be before si
0, si

0 is expected to be less 
than si

b , or si
b − si

0 will likely be positive. Thus, the covariance is likely to be positive under 
these circumstances. Hence with long-run trends in prices and very elastic responses of 

                                                                                                                                                       
 
them Scrope’s method.” Scrope’s method is the same as using the Lowe index. Walsh (1901, pp. 88–90) 
consistently stressed the importance of weighting price ratios by their economic importance (rather than using 
equally weighted averages of price relatives). Both the value ratio decomposition approach and the share-
weighted average approach to index number theory will be studied from the axiomatic perspective in the 
following chapter; see also Sections C and E in Chapter 16. 



 
 

 

purchasers to price changes, the Young index is likely to be greater than the corresponding 
Laspeyres index.  

16.57 Assume that there are long-run trends in product prices. If the trend in prices for 
product i is above the mean, then suppose that the revenue share for the product trends up 
(and vice versa). Thus, we are assuming low elasticities or very weak substitution effects. 
Assume also that the base year b is before month 0, and suppose that there is a long-term 
upward trend in the price of product i so that ri − r* ≡ (pi

t / pi
0) − r* is positive. With the 

assumed very inelastic substitution responses, si will tend to increase relatively over time and 
since si

b is assumed to be before si
0, we will have si

0 greater than si
b , or si

b − si
0 is negative. 

Thus, the covariance is likely to be negative under these circumstances. Hence with long-run 
trends in prices and very inelastic responses of purchasers to price changes, the Young index 
is likely to be less than the corresponding Laspeyres index.  

16.58 The previous two paragraphs indicate that a priori, it is not known what the likely 
difference between the Young index and the corresponding Laspeyres index will be. If 
elasticities of substitution are close to 1, then the two sets of revenue shares, si

b and si
0, will 

be close to each other and the difference between the two indices will be close to zero. 
However, if monthly revenue shares have strong seasonal components, then the annual shares 
si

b could differ substantially from the monthly shares si
0. 

16.59 It is useful to have a formula for updating the previous month’s Young price index 
using only month-over-month price relatives. The Young index for month t + 1, 
PY(p0,pt+1,sb), can be written in terms of the Lowe index for month t, PY(p0,pt,sb), and an 
updating factor as follows: 
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where the hybrid weights si

b0t are defined by 
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Thus, the hybrid weights si

b0t can be obtained from the base year weights si
b by updating 

them; that is, by multiplying them by the price relatives (or indices at higher levels of 
aggregation), pi

t / pi
0. Thus, the required updating factor, going from month t to month t + 1, 

is the chain link index, 0 1

1

( / )
n

b t t t
i i i

i

s p p+

=
∑ , which uses the hybrid share weights si

b0t defined by 

equation (16.51). 
 
16.60 Even if the Young index provides a close approximation to the corresponding 
Laspeyres index, it is difficult to recommend the use of the Young index as a final estimate 
of the change in prices going from period 0 to t, just as it was difficult to recommend the use 
of the Laspeyres index as the final estimate of inflation going from period 0 to t. Recall that 
the problem with the Laspeyres index was its lack of symmetry in the treatment of the two 
periods under consideration; that is, using the justification for the Laspeyres index as a good 
fixed-basket index, there was an identical justification for the use of the Paasche index as an 
equally good fixed-basket index to compare periods 0 and t. The Young index suffers from a 
similar lack of symmetry with respect to the treatment of the base period. The problem can 
be explained as follows. The Young index, PY(p0,pt,sb), defined by equation (16.48), 
calculates the price change between months 0 and t, treating month 0 as the base. But there is 
no particular reason to treat month 0 as the base month other than convention. Hence, if we 
treat month t as the base and use the same formula to measure the price change from month t 

back to month 0, the index PY(p0,pt,sb) = 0

1

( / )
n

b t
i i i

i

s p p
=
∑  would be appropriate. This estimate of 

price change can then be made comparable to the original Young index by taking its 
reciprocal, leading to the following rebased Young index,49 PY*(p0,pt,sb), defined as  
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Thus, the rebased Young index, PY*(p0,pt,sb), that uses the current month as the initial base 
period is a share-weighted harmonic mean of the price relatives going from month 0 to 
                                                 

49Using Irving Fisher’s (1922, p. 118) terminology, PY*(p0,pt,sb) ≡ 1/[PY(pt,p0,sb)] is the time antithesis of 
the original Young index, PY(p0,pt,sb). 



 
 

 

month t, whereas the original Young index, PY(p0,pt,sb), is a share-weighted arithmetic mean 
of the same price relatives. 
  
16.61 Fisher argued that an index number formula should give the same answer no matter 
which period was chosen as the base: 

Either one of the two times may be taken as the “base”. Will it make a difference which is chosen? 
Certainly, it ought not and our Test 1 demands that it shall not. More fully expressed, the test is that the 
formula for calculating an index number should be such that it will give the same ratio between one 
point of comparison and the other point, no matter which of the two is taken as the base. (Irving Fisher, 
1922, p. 64) 

 
16.62 The problem with the Young index is that not only does it not coincide with its 
rebased counterpart, but there is a definite inequality between the two indices, namely 

(16.53) 0 0( , , ) ( , , ),t b t b
Y YP p p s P p p s∗ ≤  

 
with a strict inequality provided that the period t price vector pt is not proportional to the 
period 0 price vector p0.50 Thus, a statistical agency that uses the direct Young index 
PY(p0,pt,sb) will generally show a higher inflation rate than a statistical agency that uses the 
same raw data but uses the rebased Young index, PY*(p0,pt,sb).  
 
16.63 The inequality in equation (16.53) does not tell us by how much the Young index 
will exceed its rebased time antithesis. However, in Appendix 15.3, it is shown that to the 
accuracy of a certain second-order Taylor series approximation, the following relationship 
holds between the direct Young index and its time antithesis: 

(16.54) 0 0 0( , , ) ( , , ) ( , , )t b t b t b
Y Y YP p p s P p p s P p p s  Var e,∗≈ +  

 
where Var e is defined as  
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50These inequalities follow from the fact that a harmonic mean of M positive numbers is always equal to or 

less than the corresponding arithmetic mean; see Walsh (1901, p.517) or Irving Fisher (1922, pp. 383–84). This 
inequality is a special case of Schlömilch’s (1858) Inequality; see Hardy, Littlewood and Polyá (1934, p. 26). 
Walsh (1901, pp. 330–32) explicitly noted the inequality in equation (16.53) and also noted that the 
corresponding geometric average would fall between the harmonic and arithmetic averages. Walsh (1901, p. 
432) computed some numerical examples of the Young index and found big differences between it and his best 
indices, even using weights that were representative for the periods being compared. Recall that the Lowe index 
becomes the Walsh index when geometric mean quantity weights are chosen, and so the Lowe index can 
perform well when representative weights are used. This is not necessarily the case for the Young index, even 
using representative weights.  Walsh (1901, p. 433) summed up his numerical experiments with the Young 
index as follows: “In fact, Young’s method, in every form, has been found to be bad.”   



 
 

 

The deviations ei are defined by 1 + ei = ri / r* for i = 1,…,n where the ri and their weighted 
mean r* are defined by 
 
(16.56) 0/ ;t

i i ir p p≡ i = 1,…,n    , 
 

(16.57) 
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which turns out to equal the direct Young index, PY(p0,pt,sb). The weighted mean of the ei is 
defined as 
 

(16.58) 
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which turns out to equal 0. Hence, the more dispersion there is in the price relatives pi

t / pi
0, 

to the accuracy of a second-order approximation, the more the direct Young index will 
exceed its counterpart that uses month t as the initial base period rather than month 0. 
 
16.64 Given two a priori equally plausible index number formulas that give different 
answers, such as the Young index and its time antithesis, Irving Fisher (1922, p. 136) 
generally suggested taking the geometric average of the two indices.51 A benefit of this 
averaging is that the resulting formula will satisfy the time reversal test. Thus, rather than 
using either the base period 0 Young index, PY(p0,pt,sb), or the current period t Young index, 
PY*(p0,pt,sb), which is always below the base period 0 Young index if there is any dispersion 
in relative prices, it seems preferable to use the following index, which is the geometric 
average of the two alternatively based Young indices:52  

(16.59) 
1/20 0 0( , , ) ( , , ) ( , , ) .t b t b t b

Y Y YP p p s P p p s P p p s∗ ∗ ∗⎡ ⎤≡ ⎣ ⎦  

 
If the base-year shares si

b happen to coincide with both the month 0 and month t shares, si
0 

and si
t respectively, the time-rectified Young index PY**(p0,pt,sb) defined by (16.59) will 

coincide with the Fisher ideal price index between months 0 and t, PF(p0,pt,q0,qt) (which will 

                                                 
51“We now come to a third use of these tests, namely, to ‘rectify’ formulae, i.e., to derive from any given 

formula which does not satisfy a test another formula which does satisfy it; …. This is easily done by 
‘crossing’, that is, by averaging antitheses.  If a given formula fails to satisfy Test 1 [the time reversal test], its 
time antithesis will also fail to satisfy it; but the two will fail, as it were, in opposite ways, so that a cross 
between them (obtained by geometrical averaging) will give the golden mean which does satisfy” (Irving 
Fisher, 1922, p. 136). Actually, the basic idea behind Fisher’s rectification procedure was suggested by Walsh, 
who was a discussant for Fisher (1921), where Fisher gave a preview of his 1922 book: “We merely have to 
take any index number, find its antithesis in the way prescribed by Professor Fisher, and then draw the 
geometric mean between the two”  (Correa Moylan Walsh, 1921b, p. 542).   

52This index is a base-year weighted counterpart to an equally weighted index proposed by Carruthers, 
Sellwood, and Ward (1980, p. 25) and Dalén (1992, p. 140) in the context of elementary index number 
formulas.  See Chapter 20 for further discussion of this unweighted index. 



 
 

 

also equal the Laspeyres and Paasche indices under these conditions). Note also that the 
index PY** defined by equation (16.59) can be produced on a timely basis by a statistical 
agency. 
 
E.   Divisia Index and Discrete Approximations  

E.1 Divisia price and quantity indices 

16.65 The second broad approach to index number theory relies on the assumption that 
price and quantity data change in a more or less continuous way. 

16.66 Suppose that the price and quantity data on the n products in the chosen domain of 
definition can be regarded as continuous functions of (continuous) time, say pi(t) and qi(t) for 
i = 1,…,n. The value of producer revenue at time t is V(t) defined in the obvious way as 

(16.60) 
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16.67 Now suppose that the functions pi(t) and qi(t) are differentiable. Then both sides of 
equation (16.60) can be differentiated with respect to time to obtain 

(16.61) 
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Divide both sides of equation (16.61) through by V(t) and, using equation (16.60), the 
following equation is obtained: 
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where the time t revenue share on product i, si(t), is defined as 
 

(16.63) 
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16.68 François Divisia (1926, p. 39) argued as follows: suppose the aggregate value at time 
t, V(t), can be written as the product of a time t price level function, P(t), say, multiplied by a 
time I quantity-level function, Q(t), say; that is, we have 

(16.64) ( ) ( ) ( ).V t P t Q t=  



 
 

 

 
Suppose, further, that the functions P(t) and Q(t) are differentiable. Then, differentiating 
(16.64) yields 
 
(16.65) ( ) ( ) ( ) ( ) ( ).V t P t Q t P t Q t′ ′ ′= +  
 
Dividing both sides of equation (16.65) by V(t) and using equation (16.64) leads to the 
following equation: 
 

(16.66) ( ) ( ) ( ) .
( ) ( ) ( )

V t P t Q t
V t P t Q t

′ ′ ′
  =    +   

 
16.69 Divisia compared the two expressions for the logarithmic value derivative, V′(t)/V(t), 
given by equation (16.62) and equation (16.66). He simply defined the logarithmic rate of 
change of the aggregate price level, P′(t)/P(t), as the first set of terms on the right-hand side 
of equation (16.62), and he simply defined the logarithmic rate of change of the aggregate 
quantity level, Q′(t)/Q(t), as the second set of terms on the right-hand side of equation 
(16.62); that is, he made the following definitions: 
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16.70 Equations (16.67) and (16.68) are reasonable definitions for the proportional changes 
in the aggregate price and quantity (or quantity) levels, P(t) and Q(t).53 The problem with 
these definitions is that economic data are not collected in continuous time; they are collected 
in discrete time. In other words, even though transactions can be thought of as occurring in 
continuous time, no producer records his or her purchases as they occur in continuous time; 
rather, purchases over a finite time period are cumulated and then recorded. A similar 
situation occurs for producers or sellers of products; firms cumulate their sales over discrete 
periods of time for accounting or analytical purposes. If it is attempted to approximate 
continuous time by shorter and shorter discrete time intervals, empirical price and quantity 
data can be expected to become increasingly erratic, since consumers make purchases only at 
discrete points of time (and producers or sellers of products make sales only at discrete points 
of time). However, it is still of some interest to approximate the continuous time price and 
quantity levels, P(t) and Q(t) defined implicitly by equations (16.67) and (16.68), by discrete 
time approximations. This can be done in two ways. Either methods of numerical 
approximation can be used or assumptions about the path taken by the functions pi(t) and 

                                                 
53If these definitions are applied (approximately) to the Young index studied in the previous section, then it 

can be seen that for the Young price index to be consistent with the Divisia price index, the base year shares 
should be chosen to be average shares that apply to the entire time period between months 0 and t.  



 
 

 

qi(t) (i = 1,…,n) through time can be made. The first strategy is used in the following section. 
For discussions of the second strategy, see Vogt (1977; 1978), Van Ijzeren (1987, pp. 8–12), 
Vogt and Barta (1997), and Balk (2000). 

16.71 There is a connection between the Divisia price and quantity levels, P(t) and Q(t), 
and the economic approach to index number theory. However, this connection is best made 
after one has studied the economic approach to index number theory in Chapter 18. Since this 
material is rather technical, it appears in Appendix 18.1. 

E.2 Discrete approximations to continuous time Divisia index 

16.72 To make operational the continuous time Divisia price and quantity levels, P(t) and 
Q(t) defined by the differential equations (16.67) and (16.68), it is necessary to convert to 
discrete time. Divisia (1926, p. 40) suggested a straightforward method for doing this 
conversion, which we now outline. 

16.73 Define the following price and quantity (forward) differences 

(16.69) (1) (0);P P PΔ ≡ −   
(16.70) (1) (0);i i ip p pΔ ≡ −  i = 1,...,n 
 
Using the above definitions: 
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using equation (16.67) when t = 0 and approximating pi(0) by the difference Δpi 
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where pt ≡ [p1(t),…,pn(t)] and qt ≡ [q1(t),…,qn(t)] for t = 0,1. Thus, it can be seen that 
Divisia’s discrete approximation to his continuous time price index is just the Laspeyres 
price index, PL, defined by equation (16.5). 
 



 
 

 

16.74 But now a problem noted by Frisch (1936, p. 8) occurs: instead of approximating the 
derivatives by the discrete (forward) differences defined by equation (16.69) and (16.70), 
other approximations could be used and a wide variety of discrete time approximations can 
be obtained. For example, instead of using forward differences and evaluating the index at 
time t = 0, one could use backward differences and evaluate the index at time t = 1. These 
backward differences are defined as 

(16.72) (0) (1);b i i ip p pΔ ≡ −  i = 1,...,n. 
 
This use of backward differences leads to the following approximation for P(0) / P(1): 
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using equation (16.67) when t = 1 and approximating pi(1) by the difference Δbpi: 
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where PP is the Paasche index defined by equation (16.6). Taking reciprocals of both sides of 
equation (16.73) leads to the following discrete approximation to P(1) / P(0): 
 

(16.74) (1)
(0) P

P P
P

≈ . 

 
16.75 Thus, as Frisch54 noted, both the Paasche and Laspeyres indices can be regarded as 
(equally valid) approximations to the continuous time Divisia price index.55 Since the 

                                                 
54“As the elementary formula of the chaining, we may get Laspeyres’ or Paasche’s or Edgeworth’s or nearly 

any other formula, according as we choose the approximation principle for the steps of the numerical 
integration. (Ragnar Frisch, 1936, p. 8). 

55Diewert (1980, p. 444) also obtained the Paasche and Laspeyres approximations to the Divisia index using a 
somewhat different approximation argument. He also showed how several other popular discrete time index 
number formulas could be regarded as approximations to the continuous time Divisia index. 



 
 

 

Paasche and Laspeyres indices can differ considerably in some empirical applications, it can 
be seen that Divisia’s idea is not all that helpful in determining a unique discrete time index 
number formula.56 What is useful about the Divisia indices is the idea that as the discrete unit 
of time gets smaller, discrete approximations to the Divisia indices can approach meaningful 
economic indices under certain conditions. Moreover, if the Divisia concept is accepted as 
the correct one for index number theory, then the corresponding correct discrete time 
counterpart might be taken as a weighted average of the chain price relatives pertaining to the 
adjacent periods under consideration, where the weights are somehow representative for the 
two periods under consideration. 

F.   Fixed-Base Versus Chain Indices 

16.76 This section57 discusses the merits of using the chain system for constructing price 
indices in the time series context versus using the fixed-base system.58 

16.77 The chain system59 measures the change in prices going from one period to another 
using a bilateral index number formula involving the prices and quantities pertaining to the 
two adjacent periods. These one-period rates of change (the links in the chain) are then 
cumulated to yield the relative levels of prices over the entire period under consideration. 
Thus, if the bilateral price index is P, the chain system generates the following pattern of 
price levels for the first three periods: 

(16.75) 0 1 0 1 0 1 0 1 1 2 1 21, ( , , , ), ( , , , ) ( , , , ).P p p q q P p p q q P p p q q  
 
16.78 On the other hand, the fixed-base system of price levels using the same bilateral 
index number formula P simply computes the level of prices in period t relative to the base 
period 0 as P(p0,pt,q0,qt). Thus, the fixed-base pattern of price levels for periods 0, 1 and, 2 is  

(16.76) 0 1 0 1 0 2 0 21, ( , , , ), ( , , , ).P p p q q P p p q q  
 
16.79 Note that in both the chain system and the fixed-base system of price levels defined 
by equations (16.75) and (16.76), the base-period price level is equal to 1. The usual practice 
                                                 

56Trivedi (1981) systematically examined the problems involved in finding a best discrete time approximation 
to the Divisia indices using the techniques of numerical analysis. However, these numerical analysis techniques 
depend on the assumption that the true continuous time micro price functions, pi(t), can be adequately 
represented by a polynomial approximation. Thus, we are led to the conclusion that the best discrete time 
approximation to the Divisia index depends on assumptions that are difficult to verify. 

57This section is based largely on the work of Peter Hill (1988; 1993, pp. 385–90). 
58The results in Appendix 17.1 provide some theoretical support for the use of chain indices in that it is shown 

that under certain conditions, the Divisia index will equal an economic index. Hence, any discrete 
approximation to the Divisia index will approach the economic index as the time period gets shorter. Thus 
,under certain conditions, chain indices will approach an underlying economic index.   

59The chain principle was introduced independently into the economics literature by Lehr (1885, pp. 45–6) 
and Marshall (1887, p. 373). Both authors observed that the chain system would mitigate the difficulties 
because of the introduction of new products into the economy, a point also mentioned by Peter Hill (1993, p. 
388).  Irving Fisher (1911, p. 203) introduced the term “chain system.” 



 
 

 

in statistical agencies is to set the base-period price level equal to 100. If this is done, then it 
is necessary to multiply each of the numbers in equations (16.75) and (16.76) by 100.  

16.80 Because of the difficulties involved in obtaining current period information on 
quantities (or, equivalently, on revenues), many statistical agencies loosely base their XMPIs 
on the Laspeyres formula in equation (16.5) and the fixed-base system. Therefore, it is of 
some interest to look at the possible problems associated with the use of fixed-base 
Laspeyres indices. 

16.81 The main problem with the use of fixed-base Laspeyres indices is that the period 0 
fixed basket of products that is being priced out in period t often can be quite different from 
the period t basket. Thus, if there are systematic trends in at least some of the prices and 
quantities60 in the index basket, the fixed-base Laspeyres price index, PL(p0,pt,q0,qt), can be 
quite different from the corresponding fixed-base Paasche price index, PP(p0,pt,q0,qt).61 This 
means that both indices are likely to be an inadequate representation of the movement in 
average prices over the time period under consideration.  

16.82 The fixed-base Laspeyres quantity index cannot be used forever; eventually, the 
base-period quantities q0 are so far removed from the current period quantities qt that the base 
must be changed. Chaining is merely the limiting case where the base is changed each 
period.62  

16.83 The main advantage of the chain system is that under normal conditions, chaining 
will reduce the spread between the Paasche and Laspeyres indices.63 These indices provide an 
asymmetric perspective on the amount of price change that has occurred between the two 
periods under consideration, and it could be expected that a single point estimate of the 
aggregate price change should lie between these two estimates. Thus, the use of either a 
chained Paasche or Laspeyres index will usually lead to a smaller difference between the two 
and hence to estimates that are closer to the “truth.”64  

16.84 Peter Hill (1993, p. 388), drawing on the earlier research of Szulc (1983) and Peter 
Hill (1988, pp. 136–37), noted that it is not appropriate to use the chain system when prices 
oscillate, or “bounce,” to use Szulc’s (1983, p. 548) term. This phenomenon can occur in the 
context of regular seasonal fluctuations or in the context of price wars. However, in the 

                                                 
60Examples of rapidly downward trending prices and upward trending quantities are computers, electronic 

equipment of all types, Internet access, and telecommunication charges.   
61 Note that PL(p0,pt,q0,qt) will equal PP(p0,pt,q0,qt) if either the two quantity vectors q0 and qt are proportional 

or the two price vectors p0 and pt are proportional.  Thus, to obtain a difference between the Paasche and 
Laspeyres indices, nonproportionality in both prices and quantities is required. 

62Regular seasonal fluctuations can cause monthly or quarterly data to “bounce,” using Szulc’s (1983) term 
and chaining bouncing data can lead to a considerable amount of index drift; that is, if after 12 months, prices 
and quantities return to their levels of a year earlier, then a chained monthly index will usually not return to 
unity. Hence, the use of chained indices for “noisy” monthly or quarterly data is not recommended without 
careful consideration. 

63See Diewert (1978, p. 895) and Peter Hill (1988) (1993 pp. 387–88). 
64This observation will be illustrated with an artificial data set in Chapter 19. 



 
 

 

context of roughly monotonically changing prices and quantities, Peter Hill (1993, p. 389) 
recommended the use of chained symmetrically weighted indices (see Section C). The Fisher 
and Walsh indices are examples of symmetrically weighted indices. 

16.85 It is possible to be a bit more precise regarding under which conditions one should or 
should not chain. Basically, one should chain if the prices and quantities pertaining to 
adjacent periods are more similar than the prices and quantities of more distant periods, since 
this strategy will lead to a narrowing of the spread between the Paasche and Laspeyres 
indices at each link.65 One needs a measure of how similar are the prices and quantities 
pertaining to two periods. The similarity measures could be relative or absolute. In the case 
of absolute comparisons, two vectors of the same dimension are similar if they are identical 
and dissimilar otherwise. In the case of relative comparisons, two vectors are similar if they 
are proportional and dissimilar if they are nonproportional.66 Once a similarity measure has 
been defined, the prices and quantities of each period can be compared using this measure, 
and a “tree” or path that links all of the observations can be constructed where the most 
similar observations are compared using a bilateral index number formula.67 R. J. Hill (1995) 
defined the price structures between the two countries to be more dissimilar the bigger is the 
spread between PL and PP; that is, the bigger max {PL/PP, PP/PL}. The problem with this 
measure of dissimilarity in the price structures of the two countries is that it could be the case 
that PL = PP (so that the R. J. Hill measure would register a maximal degree of similarity), 
but p0 could be very different from pt. Thus, there is a need for a more systematic study of 
similarity (or dissimilarity) measures to pick the best one that could be used as an input into 
R. J. Hill’s (1999a; 1999b; 2001) spanning tree algorithm for linking observations. 
                                                 

65Walsh in discussing whether fixed base or chained index numbers should be constructed, took for granted 
that the precision of all reasonable bilateral index number formulas would improve, provided that the two 
periods or situations being compared were more similar and hence, for this reason, favored the use of chained 
indices: “The question is really, in which of the two courses [fixed base or chained index numbers] are we likely 
to gain greater exactness in the comparisons actually made? Here the probability seems to incline in favor of the 
second course; for the conditions are likely to be less diverse between two contiguous periods than between two 
periods say fifty years apart.” Correa Moylan Walsh (1901, p. 206). Walsh (1921a, pp. 84-85) later reiterated 
his preference for chained index numbers. Fisher also made use of the idea that the chain system would usually 
make bilateral comparisons between price and quantity data that was more similar and hence the resulting 
comparisons would be more accurate: “The index numbers for 1909 and 1910 (each calculated in terms of 
1867-1877) are compared with each other. But direct comparison between 1909 and 1910 would give a 
different and more valuable result. To use a common base is like comparing the relative heights of two men by 
measuring the height of each above the floor, instead of putting them back to back and directly measuring the 
difference of level between the tops of their heads.” Irving Fisher (1911 p. 204). “It seems, therefore, advisable 
to compare each year with the next, or, in other words, to make each year the base year for the next. Such a 
procedure has been recommended by Marshall, Edgeworth and Flux. It largely meets the difficulty of non-
uniform changes in the Q’s, for any inequalities for successive years are relatively small.” Irving Fisher (1911, 
pp. 423-424).   

66Diewert (2002b) took an axiomatic approach to defining various indices of absolute and relative 
dissimilarity. 

67Fisher (1922, pp. 271-276) hinted at the possibility of using spatial linking; i.e., of linking countries that are 
similar in structure. However, the modern literature has grown due to the pioneering efforts of Robert Hill 
(1995) (1999a) (1999b) (2001).  Hill (1995) used the spread between the Paasche and Laspeyres price indices as 
an indicator of similarity and showed that this criterion gives the same results as a criterion that looks at the 
spread between the Paasche and Laspeyres quantity indices. 



 
 

 

16.86 The method of linking observations explained in the previous paragraph based on the 
similarity of the price and quantity structures of any two observations may not be practical in 
a statistical agency context, since the addition of a new period may lead to a reordering of the 
previous links. However, the above scientific method for linking observations may be useful 
in deciding whether chaining is preferable or whether fixed-base indices should be used 
while making month-to-month comparisons within a year.  

16.87 Some index number theorists have objected to the chain principle on the grounds that 
it has no counterpart in the spatial context: 

They [chain indices] only apply to intertemporal comparisons, and in contrast to direct indices they are 
not applicable to cases in which no natural order or sequence exists. Thus, the idea of a chain index, for 
example, has no counterpart in interregional or international price comparisons, because countries 
cannot be sequenced in a “logical” or “natural” way (there is no k + 1 nor k − 1 country to be compared 
with country k). (Peter von der Lippe, 2001, p. 12)68 

 
This is correct, but R. J. Hill’s approach does lead to a natural set of spatial links. Applying 
the same approach to the time-series context will lead to a set of links between periods that 
may not be month to month, but it will in many cases justify year-over-year linking of the 
data pertaining to the same month. This problem will be reconsidered in Chapter 23.  
 
16.88 It is of some interest to determine if there are index number formulas that give the 
same answer when either the fixed-base or chain system is used. Comparing the sequence of 
chain indices defined by equation (16.75) above to the corresponding fixed-base indices, it 
can be seen that we will obtain the same answer in all three periods if the index number 
formula P satisfies the following functional equation for all price and quantity vectors: 

(16.77) 0 2 0 2 0 1 0 1 1 2 1 2( , , , ) ( , , , ) ( , , , ).P p p q q P p p q q P p p q q=   
 
If an index number formula P satisfies equation (16.77), then P satisfies the circularity test.69  
 
16.89 If it is assumed that the index number formula P satisfies certain properties or tests in 
addition to the circularity test above,70 then Funke, Hacker, and Voeller (1979) showed that P 

                                                 
68It should be noted that von der Lippe (2001, pp. 56–8) is a vigorous critic of all index number tests based on 

symmetry in the time series context, although he is willing to accept symmetry in the context of making 
international comparisons.  “But there are good reasons not to insist on such criteria in the intertemporal case.  
When no symmetry exists between 0 and t, there is no point in interchanging 0 and t.”  (Peter von der Lippe, 
2001, p. 58).  

69The test name is credited to Irving Fisher (1922, p. 413), and the concept was originally credited to 
Westergaard (1890, pp. 218–19). 

70The additional tests are (i) positivity and continuity of P(p0,p1,q0,q1) for all strictly positive price and 
quantity vectors p0,p1,q0,q1; (ii) the identity test; (iii) the commensurability test; (iv) P(p0,p1,q0,q1) is positively 
homogeneous of degree 1 in the components of p1 ; and (v) P(p0,p1,q0,q1) is positively homogeneous of degree 
zero in the components of q1.   



 
 

 

must have the following functional form credited originally to Konüs and Byushgens71 (1926, 
pp. 163–66):72 

(16.78)
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where the n constants αi satisfy the following restrictions: 
 

(16.79) i
1
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Thus, under very weak regularity conditions, the only price index satisfying the circularity 
test is a weighted geometric average of all the individual price ratios, the weights being 
constant through time. 
 
16.90 An interesting special case of the family of indices defined by equation (16.78) 
occurs when the weights αi are all equal. In this case, PKB reduces to the Jevons (1865) index: 

(16.80)
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16.91 The problem with the indices defined by Konüs and Byushgens and Jevons is that 
the individual price ratios, pi

1 / pi
0, have weights (either αi or 1/n ) that are independent of the 

economic importance of product i in the two periods under consideration. Put another way, 
these price weights are independent of the quantities of product i consumed or the revenues 
on product i during the two periods. Hence, these indices are not really suitable for use by 
statistical agencies at higher levels of aggregation when revenue share information is 
available. 

16.92 The above results indicate that it is not useful to ask that the price index P satisfy the 
circularity test exactly. However, it is of some interest to find index number formulas that 
satisfy the circularity test to some degree of approximation, since the use of such an index 
number formula will lead to measures of aggregate price change that are more or less the 
                                                 

71Konüs and Byushgens show that the index defined by equation (16.78) is exact for Cobb-Douglas (1928) 
preferences; see also Pollak (1983, pp. 119–20).  The concept of an exact index number formula will be 
explained in Chapter 17. 

72This result can be derived using results in Eichhorn (1978, pp. 167–68) and Vogt and Barta (1997, p. 47). A 
simple proof can be found in Balk (1995). This result vindicates Irving Fisher’s (1922, p. 274) intuition. He 
asserted that “the only formulae which conform perfectly to the circular test are index numbers which have 
constant weights…” Irving Fisher (1922, p. 275) went on to assert; “But, clearly, constant weighting is not 
theoretically correct.  If we compare 1913 with 1914, we need one set of weights; if we compare 1913 with 
1915, we need, theoretically at least, another set of weights. … Similarly, turning from time to space, an index 
number for comparing the United States and England requires one set of weights, and an index number for 
comparing the United States and France requires, theoretically at least, another.” 



 
 

 

same whether we use the chain or fixed-base systems. Irving Fisher (1922, p. 284) found that 
deviations from circularity using his data set and the Fisher ideal price index PF defined by 
equation (16.12) above were quite small. This relatively high degree of correspondence 
between fixed-base and chain indices has been found to hold for other symmetrically 
weighted formulas like the Walsh index PW defined by equation (16.19).73 Thus, in most 
time-series applications of index number theory where the base year in fixed base indices is 
changed every five years or so, it will not matter very much whether the statistical agency 
uses a fixed-base price index or a chain index, provided that a symmetrically weighted 
formula is used.74 This, of course, depends on the length of the time series considered and the 
degree of variation in the prices and quantities as we go from period to period. The more 
prices and quantities are subject to large fluctuations (rather than smooth trends), the less the 
correspondence.75 

16.93 It is possible to give a theoretical explanation for the approximate satisfaction of the 
circularity test for symmetrically weighted index number formulas. Another symmetrically 
weighted formula is the Törnqvist index PT.76 The natural logarithm of this index is defined 
as follows: 

(16.81) ( )
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where the period t revenue shares si

t are defined by equation (16.7) above. Alterman, Diewert 
and Feenstra (1999, p. 61) show that if the logarithmic price ratios ln (pi

t / pi
t–1) trend linearly 

with time t, and the revenue shares si
t also trend linearly with time, then the Törnqvist index 

PT will satisfy the circularity test exactly.77 Since many economic time series on prices and 
quantities satisfy these assumptions approximately, then the Törnqvist index will satisfy the 
circularity test approximately. As will be seen in Chapter 20, generally the Törnqvist index 
closely approximates the symmetrically weighted Fisher and Walsh indices, so that for many 
economic time series (with smooth trends), all three of these symmetrically weighted indices 
will satisfy the circularity test to a high enough degree of approximation so that it will not 
matter whether we use the fixed-base or chain principle. 
 
                                                 

73See, for example Diewert (1978, p. 894). Walsh (1901, pp. 424 and 429) found that his three preferred 
formulas all approximated each other very well, as did the Fisher ideal for his artificial data set. 

74More specifically, most superlative indices (which are symmetrically weighted) will satisfy the circularity 
test to a high degree of approximation in the time series context. See Chapter 17 for the definition of a 
superlative index. It is worth stressing that fixed-base Paasche and Laspeyres indices are very likely to diverge 
considerably over a five year period if computers (or any other product that has price and quantity trends 
different from the trends in the other products) are included in the value aggregate under consideration.  See 
chapter 19 for some empirical evidence on this topic.   

75Again, see Szulc (1983) and Peter Hill (1988). 
76This formula was implicitly introduced in Törnqvist (1936) and explicitly defined in Törnqvist and 

Törnqvist (1937). 
77This exactness result can be extended to cover the case when there are monthly proportional variations in 

prices and the revenue shares have constant seasonal effects in addition to linear trends; see Alterman, Diewert 
and Feenstra (1999, p. 65). 



 
 

 

16.94 Walsh (1901, p. 401; 1921a, p. 98; 1921b, p. 540) introduced the following useful 
variant of the circularity test: 

(16.82) 0 1 0 1 1 2 1 2 0 01 ( , , , ) ( , , , )... ( , , , ).T TP p p q q P p p q q P p p q q=  
 
The motivation for this test is the following. Use the bilateral index formula P(p0,p1,q0,q1) to 
calculate the change in prices going from period 0 to 1, use the same formula evaluated at the 
data corresponding to periods 1 and 2, P(p1,p2,q1,q2), to calculate the change in prices going 
from period 1 to 2, … . Use P(pT−1,pT,qT−1,qT) to calculate the change in prices going from 
period T − 1 to T. Introduce an artificial period T + 1 that has exactly the price and quantity 
of the initial period 0 and use P(pT,p0,qT,q0) to calculate the change in prices going from 
period T to 0. Finally, multiply all these indices, and, since we end up where we started, then 
the product of all of these indices should ideally be 1. Diewert (1993a, p. 40) called this test a 
multiperiod identity test.78 Note that if T = 2 (so that the number of periods is 3 in total), then 
Walsh’s test reduces to Fisher’s (1921, p. 534) (1922, p. 64) time reversal test.79 
 
16.95 Walsh (1901, p. 423-433) showed how his circularity test could be used in order to 
evaluate the worth of a bilateral index number formula. He invented artificial price and 
quantity data for five periods and added a sixth period that had the data of the first period. He 
then evaluated the right-hand side of equation (16.82) for various formulas, P(p0,p1,q0,q1), 
and determined how far from unity the results were. His best formulas had products that were 
close to 1.80  

16.96 This same framework is often used to evaluate the efficacy of chained indices versus 
their direct counterparts. Thus, if the right-hand side of equation (16.82) turns out to be 
different from unity, the chained indices are said to suffer from “chain drift.” If a formula 
does suffer from chain drift, it is sometimes recommended that fixed-base indices be used in 
place of chained ones. However, this advice, if accepted, would always lead to the adoption 
of fixed base indices, provided that the bilateral index formula satisfies the identity test, 
P(p0,p0,q0,q0) = 1. Thus, it is not recommended that Walsh’s circularity test be used to decide 
whether fixed base or chained indices should be calculated. However, it is fair to use Walsh’s 
circularity test as he originally used it; that is, as an approximate method for deciding the 
utility of a particular index number formula. To decide whether to chain or use fixed base 
indices, one should decide on the basis of how similar are the observations being compared 
and choose the method that will best link up the most similar observations.  

                                                 
78Walsh (1921a, p. 98) called his test the circular test, but since Irving Fisher also used this term to describe 

his  transitivity test defined earlier by equation (16.77), it seems best to stick to Fisher’s terminology since it is 
well established in the literature.  

79Walsh (1921b, pp. 540–41) noted that the time-reversal test was a special case of his circularity test. 
80This is essentially a variant of the methodology that, Irving Fisher (1922, p. 284) used to check how well 

various formulas corresponded to his version of the circularity test.   



 
 

 

16.97 Various properties, axioms, or tests that an index number formula could satisfy have 
already been introduced in this chapter. In the following chapter, the test approach to index 
number theory will be studied in a more systematic manner. 

Appendix 1: Relationship Between Paasche and Laspeyres indices 

16.98 Recall the notation used in Section B.2. Define the ith relative price or price relative 
ri and the ith quantity relative ti as follows: 
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Using equation (16.8) above for the Laspeyres price index PL and equations (A16.1.1), we 
have 
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that is, we define the “average” price relative r* as the base-period revenue share-weighted 
average of the individual price relatives, ri . 
 
16.99 Using equation (16.6) for the Paasche price index PP, we have 
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where the last equality follows using equation (16.11), the definition of the Laspeyres 
quantity index QL. 
 
16.100  Taking the difference between PP and PL and using equation (A16.1.2) – equation 
(A16.1.4) yields 

(A16.1.5) * * 0
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Now let r and t be discrete random variables that take on the n values ri and ti, respectively. 
Let si

0 be the joint probability that r = ri and t = ti for i = 1,…,n, and let the joint probability 

be 0 if r = ri and t = tj where i ≠ j. It can be verified that the summation * * 0
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the right-hand side of equation (A16.1.5) is the covariance between the price relatives ri and 
the corresponding quantity relatives ti. This covariance can be converted into a correlation 
coefficient.81 If this covariance is negative, which is the usual case in the consumer context, 
then PP will be less than PL. If it is positive, which will occur in the situations where supply 
conditions are fixed (as in the fixed-input output price index), but demand is changing, then 
PP will be greater than PL.  
 
Appendix 15.2: Relationship between Lowe and Laspeyres indices 

16.101 Recall the notation used in Section D.1. Define the ith relative price relating the price 
of product i of month t to month 0, ri, and the ith quantity relative, ti, relating quantity of 
product i in base year b to month 0, ti, as follows: 
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As in Appendix 15.1, the Laspeyres price index PL(p0,pt,q0) can be defined as r*, the month 0 
expenditure share weighted average of the individual price relatives ri defined in equation 
(A16.2.1), except that the month t price, pi

t, now replaces period 1 price, pi
1, in the definition 

of the ith price relative ri : 
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81See Bortkiewicz (1923, pp. 374–75) for the first application of this correlation coefficient decomposition 

technique. 



 
 

 

16.102 The average quantity relative t* relating the quantities of base year b to those of 
month 0 is defined as the month 0 expenditure share-weighted average of the individual 
quantity relatives ti defined in equation (A16.2.1): 
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where QL = QL(q0,qb,p0) is the Laspeyres quantity index relating the quantities of month 0, q0, 
to those of the year b, qb, using the prices of month 0, p0, as weights. 
 
16.103 Using equation (16.26), the Lowe index comparing the prices in month t with those 
of month 0, using the quantity weights of the base year b, is equal to  
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                                                               using equation (A16.2.1) 
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                                      using equation (A16.2.3) 
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since using equation (A16.2.2), r* equals the Laspeyres price index, PL(p0,pt,q0), and using 
equation (A16.2.3), t* equals the Laspeyres quantity index, QL(q0,qb,p0). Thus, equation 
b(A16.2.4) tells us that the Lowe price index using the quantities of year b as weights, 
PLo(p0,pt,qb), is equal to the usual Laspeyres index using the quantities of month 0 as weights, 

PL(p0,pt,q0), plus a covariance term 0

1

( )( )
n

i i i
i

r r t t s∗ ∗

=

− −∑  between the price relatives ri ≡ pi
t / pi

0 

and the quantity relatives ti ≡ qi
b / qi

0, divided by the Laspeyres quantity index QL(q0,qb,p0) 
between month 0 and base year b. 
 
Appendix 15.3: Relationship between Young index and its time 
antithesis  

16.104 Recall that the direct Young index, PY(p0,pt,sb), was defined by equation (16.48) and 
its time antithesis, PY*(p0,pt,sb), was defined by equation (16.52). Define the ith relative price 
between months 0 and t as  

(A16.3.1) 0/ ;t
i i ir p p≡ i = 1,...,n  , 

 
and define the weighted average (using the base-year weights si

b) of the ri as 
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which turns out to equal the direct Young index, PY(p0,pt,sb). Define the deviation ei of ri 
from their weighted average r* using the following equation: 
 
(A16.3.3) (1 );i ir r e∗= + i = 1,...,n. 
 
If equation (A16.3.3) is substituted into equation (A16.3.2), the following equations are 
obtained: 
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(A16.3.5) 
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Thus, the weighted mean e* of the deviations ei equals 0. 
 
16.105 The direct Young index, PY(p0,pt,sb), and its time antithesis, PY*(p0,pt,sb), can be 
written as functions of r*, the weights si

b and the deviations of the price relatives ei as 
follows:  
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16.106 Now, regard PY*(p0,pt,sb) as a function of the vector of deviations, e ≡ [e1,…,en], say 
PY*(e). The second-order Taylor series approximation to PY*(e) around the point e = 0n is 
given by the following expression:82 

(A16.3.8) [ ]2

1 1 1 1
( )

n n n n
b b b b

Y i i i j i j i i
i i j i

P e r r s e r s s e e r s e∗ ∗ ∗ ∗ ∗

= = = =

≈ + + −∑ ∑∑ ∑  

     
2

1 1 1

0 *
n n n

b b b
i j j i i i

i j i

r r r s s e e r s e e∗ ∗ ∗ ∗

= = =

⎡ ⎤
⎡ ⎤= + + − −⎢ ⎥ ⎣ ⎦

⎣ ⎦
∑ ∑ ∑                                   using equation (A16.3.5) 

     [ ]
2

1 1
0

n n
b b
i i i i

i i
r r s e r s e e∗ ∗ ∗ ∗

= =

⎡ ⎤= + − −⎣ ⎦∑ ∑                                                       using equation (A16.3.5) 

     
2

0 0

1
( , , ) ( , , )

n
t b t b b

Y Y i i
i

P p p s P p p s s e e∗

=

⎡ ⎤= − −⎣ ⎦∑                                           using equation (A16.3.6) 

     0 t b 0 t b
Y YP (p ,p ,s ) P (p ,p ,s )Var e= −    

 
where the weighted sample variance of the vector e of price deviations is defined as 
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82This type of second-order approximation is credited to Dalén (1992, p. 143) for the case r* = 1 and to 

Diewert (1995, p. 29) for the case of a general r*. 



 
 

 

16.107 Rearranging equation (A16.3.8) gives the following approximate relationship 
between the direct Young index PY(p0,pt,sb) and its time antithesis PY*(p0,pt,sb), to the 
accuracy of a second-order Taylor series approximation about a price point where the month 
t price vector is proportional to the month 0 price vector: 

(A16.3.10) 0 0 0( , , ) ( , , ) ( , , ) Var .t b t b t b
Y Y YP p p s P p p s P p p s e∗≈ +  

 
Thus, to the accuracy of a second-order approximation, the direct Young index will exceed 
its time antithesis by a term equal to the direct Young index times the weighted variance of 
the deviations of the price relatives from their weighted mean. Thus, the bigger the dispersion 
in relative prices, the more the direct Young index will exceed its time antithesis. 
 


