17. Axiomatic and Stochastic Approaches to Index
Number Theory

A. Introduction

17.1  As Chapter 16 demonstrated, it is useful to be able to evaluate various index number
formulas that have been proposed in terms of their properties. If a formula turns out to have
rather undesirable properties, then doubt is cast on its suitability as a target index that could
be used by a statistical agency. Looking at the mathematical properties of index number
formulas leads to the test or axiomatic approach to index number theory. In this approach,
desirable properties for an index number formula are proposed; then it is determined whether
any formula is consistent with these properties or tests. An ideal outcome is that the proposed
tests are desirable and completely determine the functional form for the formula.

17.2  The axiomatic approach to index number theory is not completely straightforward,
since choices have to be made in two dimensions:

e The index number framework must be determined;
e Once the framework has been decided upon, the tests or properties that should be
imposed on the index number need to be determined.

The second point is straightforward: different price statisticians may have different ideas
about what tests are important, and alternative sets of axioms can lead to alternative best
index number functional forms. This point must be kept in mind while reading this chapter,
since there is no universal agreement on what the best set of reasonable axioms is. Hence, the
axiomatic approach can lead to more than one best index number formula.

17.3  The first point about choices listed above requires further discussion. In the previous
chapter, for the most part, the focus was on bilateral index number theory; that is, it was
assumed that prices and quantities for the same n» commodities were given for two periods,
and the object of the index number formula was to compare the overall level of prices in one
period with that of the other period. In this framework, both sets of price and quantity vectors
were regarded as variables that could be independently varied, so that, for example,
variations in the prices of one period did not affect the prices of the other period or the
quantities in either period. The emphasis was on comparing the overall cost of a fixed basket
of quantities in the two periods or taking averages of such fixed-basket indices. This is an
example of an index number framework.

17.4 But other index number frameworks are possible. For example, instead of
decomposing a value ratio into a term that represents price change between the two periods
times another term that represents quantity change, one could attempt to decompose a value
aggregate for one period into a single number that represents the price level in the period
times another number that represents the quantity level in the period. In the first variant of
this approach, the price index number is supposed to be a function of the n product prices
pertaining to that aggregate in the period under consideration, and the quantity index number
is supposed to be a function of the n product quantities pertaining to the aggregate in the



period. The resulting price index function was called an absolute index number by Frisch
(1930, p. 397), a price level by Eichhorn (1978, p. 141), and a unilateral price index by
Anderson, Jones, and Nesmith (1997, p. 75). In a second variant of this approach, the price
and quantity functions are allowed to depend on both the price and quantity vectors
pertaining to the period under consideration.' These two variants of unilateral index number
theory will be considered in Section B.?

17.5  The remaining approaches in this chapter are largely bilateral approaches; that is, the
prices and quantities in an aggregate are compared for two periods. In Sections C and E
below, the value ratio decomposition approach is taken.’ In Section C, the bilateral price and
quantity indices, P(p°,p'.¢".¢") and O(p°p'.¢".q"), are regarded as functions of the price
vectors pertaining to the two periods, p’ and p', and the two quantity vectors, ¢° and ¢'. Not
only do the axioms or tests that are placed on the price index P(p°,p',¢°,¢") reflect reasonable
price index properties, some of them have their origin as reasonable tests on the quantity
index O(p°,p',4°,¢"). The approach in Section C simultaneously determines the best price and
quantity indices.

17.6  In Section D, attention is shifted to the price ratios for the n commodities between
periods 0 and 1, r; = p;'/p,’ for i = 1,...,n. In the unweighted stochastic approach to index
number theory, the price index is regarded as an evenly weighted average of the n price
relatives or ratios, 7. Carli (1764) and Jevons (1863) (1865) were the early pioneers in this
approach to index number theory, with Carli using the arithmetic average of the price
relatives and Jevons endorsing the geometric average (but also considering the harmonic
average). This approach to index number theory will be covered in Section D.1. This
approach is consistent with a statistical approach that regards each price ratio 7; as a random
variable with mean equal to the underlying price index.

17.7 A major problem with the unweighted average of price relatives approach to index
number theory is that it does not take into account the economic importance of the individual
commodities in the aggregate. Arthur Young (1812) did advocate some form of rough
weighting of the price relatives according to their relative value over the period being
considered, but the precise form of the required value weighting was not indicated.’
However, it was Walsh (1901, pp. 83—121; 1921a, pp. 81-90) who stressed the importance of
weighting the individual price ratios, where the weights are functions of the associated values

'Eichhorn (1978 p. 144) and Diewert (1993d, p. 9) considered this approach.

’In these unilateral index number approaches, the price and quantity vectors are allowed to vary
independently. In yet another index number framework, prices are allowed to vary freely, but quantities are
regarded as functions of the prices. This leads to the economic approach to index number theory, which will be
considered in more depth in Chapters 17 and 18.

Recall Section B in Chapter 16 for an explanation of this approach.

*Walsh (1901, p. 84) refers to Young’s contributions as follows: “Still, although few of the practical
investigators have actually employed anything but even weighting, they have almost always recognized the
theoretical need of allowing for the relative importance of the different classes ever since this need was first
pointed out, near the commencement of the century just ended, by Arthur Young. ... Arthur Young advised
simply that the classes should be weighted according to their importance.”



for the commodities in each period and each period, is to be treated symmetrically in the
resulting formula:

What we are seeking is to average the variations in the exchange value of one given total sum of
money in relation to the several classes of goods, to which several variations [price ratios] must be
assigned weights proportional to the relative sizes of the classes. Hence the relative sizes of the classes
at both the periods must be considered. (Correa Moylan Walsh, 1901, p. 104)

Commodities are to be weighted according to their importance, or their full values. But the problem of
axiometry always involves at least two periods. There is a first period and there is a second period
which is compared with it. Price variations® have taken place between the two, and these are to be
averaged to get the amount of their variation as a whole. But the weights of the commodities at the
second period are apt to be different from their weights at the first period. Which weights, then, are the
right ones—those of the first period or those of the second? Or should there be a combination of the
two sets? There is no reason for preferring either the first or the second. Then the combination of both
would seem to be the proper answer. And this combination itself involves an averaging of the weights
of the two periods. (Correa Moylan Walsh, 1921a, p. 90)

17.8  Thus, Walsh was the first to examine in some detail the rather intricate problems® in
deciding how to weight the price relatives pertaining to an aggregate, taking into account the
economic importance of the commodities in the two periods being considered. Note that the
type of index number formulas that he was considering was of the form P(r,v°,v"), where r is
the vector of price relatives that has ith component r; = p;'/p,’ and V' is the period ¢ value
vector that has ith component v = p/q/ for t=0,1. His suggested solution to this weighting
problem was not completely satisfactory, but he did at least suggest a useful framework for a
price index as a value-weighted average of the n price relatives. The first satisfactory solution
to the weighting problem was obtained by Theil (1967, pp. 136—137), and his solution will be
explained in Section D.2.

17.9 It can be seen that one of Walsh’s approaches to index number theory’ was an
attempt to determine the best weighted average of the price relatives, 7. This is equivalent to

>A price variation is a price ratio or price relative in Walsh’s terminology.

SWalsh (1901, pp. 104—105) realized that it would not do to simply take the arithmetic average of the values in
the two periods, [v" +v;']/2, as the correct weight for the ith price relative r; since, in a period of rapid inflation,
this would give too much importance to the period that had the highest prices, and he wanted to treat each
period symmetrically: “But such an operation is manifestly wrong. In the first place, the sizes of the classes at
each period are reckoned in the money of the period, and if it happens that the exchange value of money has
fallen, or prices in general have risen, greater influence upon the result would be given to the weighting of the
second period; or if prices in general have fallen, greater influence would be given to the weighting of the
second period. Or in a comparison between two countries greater influence would be given to the weighting of
the country with the higher level of prices. But it is plain that the one period, or the one country, is as
important, in our comparison between them, as the other, and the weighting in the averaging of their weights
should really be even.” However, Walsh was unable to come up with Theil’s (1967) solution to the weighting
problem, which was to use the average revenue share [s,’ + 5;']/2, as the correct weight for the ith price relative
in the context of using a weighted geometric mean of the price relatives.

"Walsh also considered basket type approaches to index number theory, as was seen in Chapter 16.



using an axiomatic approach to try and determine the best index of the form P(r,v’,v"). This
approach will be considered in Section E below.®

17.10 Recall that in Chapter 16, the Young and Lowe indices were introduced. These
indices do not fit precisely into the bilateral framework because the value or quantity weights
used in these indices do not necessarily correspond to the values or quantities that pertain to
either of the periods that correspond to the price vectors p° and p'. In Section F, the
axiomatic properties of these two indices with respect to their price variables will be studied.

B. The Levels Approach to Index Number Theory
B.1 Axiomatic approach to unilateral price indices

17.11 Denote the price and quantity of product z in period ¢ by p;' and g/, respectively, for
i=12,.,nand t=0,1,...,T. The variable g/ is interpreted as the total amount of product i
transacted within period ¢. In order to conserve the value of transactions, it is necessary that
pi be defined as a unit value; that is, p; must be equal to the value of transactions in product i
for period ¢ divided by the total quantity transacted, ¢;. In principle, the period of time should
be chosen so that variations in product prices within a period are quite small compared to
their variations between periods.” For ¢ = 0,1,...,T, and i = 1,...,n, define the value of
transactions in product i as v/ = p/'g/' and define the total value of transactions in period t as:

8In Section E, rather than starting with indices of the form P(r,vo,vl), indices of the form P(po,pl,vo,vl) are
considered. However, if the invariance to changes in the units of measurement test is imposed on this index, it is
equivalent to studying indices of the form P(r°,v'). Vartia (1976a) also used a variation of this approach to
index number theory.

*This treatment of prices as unit values over time follows Walsh (1901, p. 96; 1921a, p. 88) and Fisher (1922,
p- 318). Fisher and Hicks both had the idea that the length of the period should be short enough so that
variations in price within the period could be ignored as the following quotations indicate: “Throughout this
book ‘the price’ of any commodity or ‘the quantity’ of it for any one year was assumed given. But what is such
a price or quantity? Sometimes it is a single quotation for January 1 or July 1, but usually it is an average of
several quotations scattered throughout the year. The question arises: On what principle should this average be
constructed? The practical answer is any kind of average since, ordinarily, the variation during a year, so far, at
least, as prices are concerned, are too little to make any perceptible difference in the result, whatever kind of
average is used. Otherwise, there would be ground for subdividing the year into quarters or months until we
reach a small enough period to be considered practically a point. The quantities sold will, of course, vary
widely. What is needed is their sum for the year (which, of course, is the same thing as the simple arithmetic
average of the per annum rates for the separate months or other subdivisions). In short, the simple arithmetic
average, both of prices and of quantities, may be used. Or, if it is worth while to put any finer point on it, we
may take the weighted arithmetic average for the prices, the weights being the quantities sold.” Irving Fisher
(1922, p. 318). “I shall define a week as that period of time during which variations in prices can be neglected.
For theoretical purposes this means that prices will be supposed to change, not continuously, but at short
intervals. The calendar length of the week is of course quite arbitrary; by taking it to be very short, our
theoretical scheme can be fitted as closely as we like to that ceaseless oscillation which is a characteristic of
prices in certain markets.” (John Hicks, 1946, p. 122).



17.Hv! EZn:vf =Zn:pqu , t=0,1,...,T.
i1 i=1

17.12 Using the notation above, the following levels version of the index number problem
is defined as follows: for ¢=0,1,...,T, find scalar numbers P’ and (' such that

(172)V' =P0Q', t=0,1,...T.

The number P' is interpreted as an aggregate period ¢ price level, while the number Q' is
interpreted as an aggregate period ¢ quantity level. The aggregate price level P’ is allowed to
be a function of the period ¢ price vector, p', while the aggregate period ¢ quantity level Q' is
allowed to be a function of the period ¢ quantity vector, ¢'. As a result we have the following:

(17.3)P' =c(p') and O' = f(¢"), t=0,1,..,T.

17.13 The functions ¢ and f are to be determined somehow. Note that equation (17.3)
requires that the functional forms for the price aggregation function ¢ and for the quantity
aggregation function f'be independent of time. This is a reasonable requirement, since there is
no reason to change the method of aggregation as time changes.

17.14 Substituting equations (17.3) and (17.2) into equation (17.1) and dropping the

superscripts ¢ means that ¢ and f must satisfy the following functional equation for all strictly
positive price and quantity vectors:

(17.4) c(p) /(@)=Y pa, -

for all p; > 0 and for all ¢; > 0.

17.15 It is natural to assume that the functions c(p) and f{(q) are positive if all prices and
quantities are positive:

(17.5) e(pyses ) > 05 (415,9,) > 0

if all p; > 0 and for all g; > 0.

17.16 Let 1, denote an n dimensional vector of ones. Then equation (17.5) implies that
when p = 1,, ¢(1,) is a positive number, a for example, and when ¢ = 1,, then f(1,) is also a

positive number, b for example; that is, equation (17.5) implies that ¢ and f'satisfy:

(17.6) c(1,)=a>0;f(1,)=b>0.

17.17 Let p = 1, and substitute the first expression in equation (17.6) into (17.4) in order to
obtain the following equation:



(17.7) f(q)zzn:& forall g, > 0.

i=1

17.18 Now let g = 1, and substitute the second part of equation (17.6) into (17.4) in order
to obtain the following equation:

c(p)= Z% for all p, > 0.

i=1

17.19 Finally substitute equations (17.7) and (17.8) into the left hand side of equation
(17.4) and the following equation is obtained:

(17.9) (Z%j [z"-j:zpq

for all p; > 0 and for all ¢; > 0. If n is greater than one, it is obvious that equation (17.9)
cannot be satisfied for all strictly positive p and ¢ vectors. Thus, if the number of
commodities n exceeds one, then there are no functions ¢ and f that satisfy equations (17.4)
and (17.5)."

17.20 Thus, this levels test approach to index number theory comes to an abrupt halt; it is
fruitless to look for price and quantity level functions, P’ = c(p") and Q' = fig"), that satisfy
(17.2) or (17.4) and also satisfy the very reasonable positivity requirements in equation
(17.5).

17.21 Note that the levels price index function, c(p’), did not depend on the corresponding
quantity vector ¢', and the levels quantity index function, f{g"), did not depend on the price
vector p'. Perhaps this is the reason for the rather negative result obtained above. As a result,

in the next section, the price and quantity functions are allowed to be functions of both p' and
t

q.
B.2 A second axiomatic approach to unilateral price indices

17.22 In this section, the goal is to find functions of 2x variables, c¢(p,q) and f(p,q) such that
the following counterpart to equation (17.4) holds:

(17.10) ) (1) =Y P

for all p; > 0 and for all ¢; > 0.

17.23  Again, it is natural to assume that the functions c(p,q) and f(p,q) are positive if all
prices and quantities are positive:

"Eichhorn (1978, p. 144) established this result.



(17.01) c(pyseesP,3@ysesG,) > 05 (Dyseeos D3 Grsenq, ) > 0
if all p; > 0 and for all g; > 0.

17.24 The present framework does not distinguish between the functions ¢ and f, so it is
necessary to require that these functions satisfy some reasonable properties. The first
property imposed on c¢ is that this function be homogeneous of degree one in its price
components:

(17.12) c(Ap,q)=A c(p,q) forall A >0.

Thus if all prices are multiplied by the positive number A, then the resulting price index is A
times the initial price index. A similar linear homogeneity property is imposed on the
quantity index f; that is, f'is to be homogeneous of degree one in its quantity components:

(17.13) f(p.hq)=A f(p.q) forallh >0.

17.25 Note that the properties in equations (17.10), (17.11), and (17.13) imply that the
price index c(p,q) has the following homogeneity property with respect to the components of

q:

n

(17.14) c(prg) =3 LM where 1> 0.

i f(p,\q)
_3_PM i (163)
o M(p.q)
_~N_ P
i=l1 f(p3Q)

= c¢(p,q)using equations (16.10) and (16.11).

Thus c(p,q) is homogeneous of degree 0 in its ¢ components.

17.26 A final property that is imposed on the levels price index c(p,q) is the following: Let
the positive numbers d; be given. Then it is asked that the price index be invariant to changes
in the units of measurement for the » commodities, so that the function c(p,q) has the
following property:

(17.15) c(d,pyseesd, 34, /Ay 5o q, [d,) = C(Pyseces P35 Q15 -r G-



17.27 1t is now possible to show that the properties in equations (17.10), (17.11), (17.12),
(17.14), and (17.15) on the price levels function c(p,q) are inconsistent; that is, there is no
function of 27 variables c(p,q) that satisfies these quite reasonable properties."

17.28 To see why this is so, apply (17.15), setting d; = g, for each i, to obtain the following
equation:

(17.16) c(Pyseves Py3 e ) = (P15 Pyy3 1o D)

If c(p,q) satisfies the linear homogeneity property in equation (17.12) so that c(Ap,q) =
Ac(p,q), then (17.16) implies that c(p,q) is also linearly homogeneous in ¢, so that c(p,Aq) =
Ac(p,q). But this last equation contradicts equation (17.14), which establishes the
impossibility result.

17.29 The rather negative results obtained in Sections B.1 and this section indicate that it is
fruitless to pursue the axiomatic approach to the determination of price and quantity levels,
where both the price and quantity vector are regarded as independent variables.'* Therefore,
in the following sections of this chapter, the axiomatic approach to the determination of a
bilateral price index of the form P(p°,p',q",q") will be pursued.

C. First Axiomatic Approach to Bilateral Price Indices
C.1 Bilateral indices and some early tests

17.30 In this section, the strategy will be to assume that the bilateral price index formula,
Pp°’p'.q".q"), satisfies a sufficient number of reasonable tests or properties so that the
functional form for p is determined.” The word bilateral* refers to the assumption that the
function p depends only on the data pertaining to the two situations or periods being
compared; that is, p is regarded as a function of the two sets of price and quantity
vectors,(p”,p',¢°,¢"), that are to be aggregated into a single number that summarizes the
overall change in the n price ratios, pi'/p\°,..., pn'/ps".

17.31 In this section, the value ratio decomposition approach to index number theory will
be taken; that is, along with the price index P(p°p',q’,q"), there is a companion quantity
index O(p°,p',¢",¢") such that the product of these two indices equals the value ratio between

"'This proposition is due to Diewert (1993d, p. 9), but his proof is an adaptation of a closely related result due
to Eichhorn (1978, pp. 144-145).

“Recall that in the economic approach, the price vector p is allowed to vary independently, but the
corresponding quantity vector ¢ is regarded as being determined by p.

BMuch of the material in this section is drawn from sections 2 and 3 of Diewert (1992a). For more recent
surveys of the axiomatic approach, see Balk (1995) and Auer (2001).

“Multilateral index number theory refers to the case where there are more than two situations whose prices
and quantities need to be aggregated.



the two periods.” Thus, throughout this section, it is assumed that p and ¢ satisfy the
following product test:

(1717) VI/VO _ PCDO,p],qO,ql)QCDO,pl,qO,ql)-

The period ¢ values, V', for ¢ = 0,1 are defined by equation (17.1). Equation (17.17) means
that as soon as the functional form for the price index p is determined, then equation (17.17)
can be used to determine the functional form for the quantity index Q. However, a further
advantage of assuming that the product test holds is that if a reasonable test is imposed on the
quantity index Q, then equation (17.17) can be used to translate this test on the quantity index
into a corresponding test on the price index P.'®

17.32 If n = 1, so that there is only one price and quantity to be aggregated, then a natural
candidate for p is p,'/p,° , the single price ratio, and a natural candidate for ¢ is ¢;'/¢q,° , the
single quantity ratio. When the number of products or items to be aggregated is greater than
1, index number theorists have proposed over the years properties or tests that the price index
p should satisfy. These properties are generally multidimensional analogues to the one good
price index formula, pi'/p\’. In sections C.2 through C.6, 20 tests are listed that turn out to
characterize the Fisher ideal price index.

17.33 It will be assumed that every component of each price and quantity vector is
positive; that is, p' > > 0, and ¢’ > > 0, 7 for ¢ = 0,1. If it is desired to set ¢° = ¢', the
common quantity vector is denoted by ¢; if it is desired to set p’ = p', the common price
vector is denoted by p.

17.34 The first two tests are not very controversial, so they will not be discussed in detail.
T1—Positivity **: P°.p'.4°.q") > 0.

T2—Continuity '*: P(p°,p',4",¢") is a continuous function of its arguments.

17.35 The next two tests are somewhat more controversial.

T3—Identity or Constant Prices Test : P(p.p,q°,q") = 1.

See Section B of Chapter 16 for more on this approach, which was initially due to I. Fisher (1911, p. 403;
1922).

"®This observation was first made by Fisher (1911, pp. 400-406). Vogt (1980) and Diewert (1992a) also
pursued this idea.

"Notation: ¢ >> 0, means that each component of the vector ¢ is positive; g > 0, means each component of ¢
is nonnegative; and ¢ > 0, means ¢ > 0, and g # 0,.

"®Eichhorn and Voeller (1976, p. 23) suggested this test.

PFisher (1922, pp. 207-215) informally suggested the essence of this test.

Laspeyres (1871, p. 308), Walsh (1901, p. 308), and Eichhorn and Voeller (1976, p. 24) have all suggested
this test. Laspeyres came up with this test or property to discredit the ratio of unit values index of Drobisch
(1871a), which does not satisfy this test. This test is also a special case of Fisher’s (1911, pp. 409—410) price
proportionality test.



That is, if the price of every good is identical during the two periods, then the price index
should equal unity, no matter what the quantity vectors are. The controversial part of this test
is that the two quantity vectors are allowed to be different.”

> plg,

T4—Fixed Basket or Constant Quantities Test **: P(p°,p',q,q) =-1—.

> pla,
i=1

That is, if quantities are constant during the two periods so that ¢° = ¢' = ¢, then the price

index should equal the revenue generated by selling the constant basket in period 1, z pq;

i=1
divided by the revenue generated by selling® the basket in period 0, Z /g .

i=1

17.36 If the price index p satisfies test T4 and p and g jointly satisfy the product test,
equation (17.17), then it is easy to show?* that ¢ must satisfy the identity test O(p°,p',¢.q) = 1
for all strictly positive vectors p°,p',g. This constant quantities test for g is also somewhat
controversial, since p° and p' are allowed to be different.

C.2 Homogeneity tests

17.37 The following four tests restrict the behavior of the price index p as the scale of any
one of the four vectors p’,p',¢",¢" changes.

T5—Proportionality in Current Prices **: P’ \p',q°,q") = AP(p° p',4°,¢") for 1. > 0.

That is, if all period 1 prices are multiplied by the positive number A, then the new price
index is A times the old price index. Put another way, the price index function P(p°,p',¢%,¢")

?'Usually, economists assume that given a price vector p, the corresponding quantity vector ¢ is uniquely
determined. Here, the same price vector is used, but the corresponding quantity vectors are allowed to be
different.

*The origins of this test go back at least 200 years to the Massachusetts legislature. which used a constant
basket of goods to index the pay of Massachusetts soldiers fighting in the American Revolution; see Willard
Fisher (1913). Other researchers who have suggested the test over the years include Lowe (1823, Appendix, p.
95), Scrope (1833, p. 406), Jevons (1865), Sidgwick (1883, pp. 67-68), Edgeworth (1925, p. 215) originally
published in 1887, Marshall (1887, p. 363), Pierson (1895, p. 332), Walsh (1901, p. 540; 1921b, pp. 543-544),
and Bowley (1901, p. 227). Vogt and Barta (1997, p. 49) correctly observe that this test is a special case of
Fisher’s (1911, p. 411) proportionality test for quantity indexes which Fisher (1911, p. 405) translated into a test
for the price index using the product test in equation (16.3).

3 The word “revenue” is appropriate in the export price index context but this word should be replaced by
“cost” or “expenditure” in the import price index context.

*See Vogt (1980, p. 70).

*This test was proposed by Walsh (1901, p. 385), Eichhorn and Voeller (1976, p. 24), and Vogt (1980, p. 68).



is (positively) homogeneous of degree one in the components of the period 1 price vector p'.
Most index number theorists regard this property as a fundamental one that the index number
formula should satisfy.

17.38 Walsh (1901) and Fisher (1911, p. 418; 1922, p. 420) proposed the related
proportionality test P(p,Ap,q°,¢") = L. This last test is a combination of T3 and T5; in fact,
Walsh (1901, p. 385) noted that this last test implies the identity test T3.

17.39 In the next test, instead of multiplying all period 1 prices by the same number, all
period 0 prices are multiplied by the number A.

T6—Inverse Proportionality in Base Period Prices:*
POY° P 4 g =2P@° p' " ") for > 0.

That is, if all period 0 prices are multiplied by the positive number A, then the new price
index is 1/ times the old price index. Put another way, the price index function P(p°,p',¢°,¢")
is (positively) homogeneous of degree minus one in the components of the period O price
vector p.

17.40 The following two homogeneity tests can also be regarded as invariance tests.

T7—Invariance to Proportional Changes in Current Quantities:
P@p 4’ M) = P’ p'q’q") forall L > 0.

That is, if current period quantities are all multiplied by the number A, then the price index
remains unchanged. Put another way, the price index function P(p°p',¢°,¢") is (positively)
homogeneous of degree zero in the components of the period 1 quantity vector g . Vogt
(1980, p. 70) was the first to propose this test,”” and his derivation of the test is of some
interest. Suppose the quantity index g satisfies the quantity analogue to the price test T5; that
is, suppose ¢ satisfies 00" ,p',¢°,A¢") = 10" p'.4°,¢") for 2> 0. Then using the product test
in equation (17.17), it can be seen that p must satisfy T7.

T8—Invariance to Proportional Changes in Base Quantities:*
P(poaplakqoaql) = P(po,pl,qo,ql) for all A > 0.

That is, if base period quantities are all multiplied by the number A, then the price index
remains unchanged. Put another way, the price index function P(p°p',¢°,¢") is (positively)
homogeneous of degree zero in the components of the period 0 quantity vector ¢°. If the
quantity index g¢ satisfies the following counterpart to T8: O(p°,p"',4¢".¢") = 20’ p'.4°.4")

Eichhorn and Voeller (1976, p. 28) suggested this test.
*"Fisher (1911, p. 405) proposed the related test P(p’,p',¢° 1q%) = P’ p'.a"a") = D _pla’ /D pla) .
i=1 i=1

i i

*This test was proposed by Diewert (1992a, p. 216).



for all A > 0, then using equation (17.17), the corresponding price index p must satisfy T8.
This argument provides some additional justification for assuming the validity of T8 for the
price index function P.

17.41 T7 and T8 together impose the property that the price index p does not depend on the
absolute magnitudes of the quantity vectors ¢° and ¢'.

C.3 Invariance and symmetry tests

17.42 The next five tests are invariance or symmetry tests. Fisher (1922, pp. 62-63, 458—
60) and Walsh (1901, p. 105; 1921b, p. 542) seem to have been the first researchers to
appreciate the significance of these kinds of tests. Fisher (1922, pp. 62—-63) spoke of fairness,
but it is clear that he had symmetry properties in mind. It is perhaps unfortunate that he did
not realize that there were more symmetry and invariance properties than the ones he
proposed; if he had realized this, it is likely that he would have been able to provide an
axiomatic characterization for his ideal price index, as will be done in Section C.6. The first
invariance test is that the price index should remain unchanged if the ordering of the
commodities is changed:

T9—Commodity Reversal Test (or invariance to changes in the ordering of commodities):
P@™.p"*.q" ") = P’ p'4"q")

where p'* denotes a permutation of the components of the vector p’, and ¢'* denotes the same
permutation of the components of ¢’ for ¢ = 0,1. This test is due to Irving Fisher (1922, p.
63);” it is one of his three famous reversal tests. The other two are the time reversal test and
the factor reversal test, which will be considered below.

17.43 The next test asks that the index be invariant to changes in the units of measurement.

T10—Invariance to Changes in the Units of Measurement (commensurability test):
0 0 1 1. -1 0 10, -1 1 11

P(0UP1 e 0P 3 QUUPTL 5oy OPn 5 O1 @1 5eesOn G 5 O 1 eyl G ) =
P(plo,...,pno;pll,...,pnl; qlo,...,qno; qll,...,qnl) forall oy >0, ..., o, > 0.

That is, the price index does not change if the units of measurement for each product are
changed. The concept of this test comes from Jevons (1863, p. 23) and the Dutch economist
Pierson (1896, p. 131), who criticized several index number formulas for not satisfying this
fundamental test. Fisher (1911, p. 411) first called this test the change of units test, and later
(Fisher, 1922, p. 420) he called it the commensurability test.

17.44 The next test asks that the formula be invariant to the period chosen as the base
period.

P<This [test] is so simple as never to have been formulated. It is merely taken for granted and observed
instinctively. Any rule for averaging the commodities must be so general as to apply interchangeably to all of
the terms averaged.” Irving Fisher (1922, p. 63).



T11—Time Reversal Test: P(p°p' .4°,4") = /P(' . p°.q".4").

That is, if the data for periods 0 and 1 are interchanged, then the resulting price index should
equal the reciprocal of the original price index. In the one good case when the price index is
simply the single price ratio, this test will be satisfied (as are all of the other tests listed in this
section). When the number of goods is greater than one, many commonly used price indices
fail this test; for example, the Laspeyres (1871) price index, P, defined by equation (16.5) in
Chapter 16, and the Paasche (1874) price index, Pp defined by equation (16.6) in Chapter 16,
both fail this fundamental test. The concept of the test comes from Pierson (1896, p. 128),
who was so upset with the fact that many of the commonly used index number formulas did
not satisfy this test that he proposed that the entire concept of an index number should be
abandoned. More formal statements of the test were made by Walsh (1901, p. 368; 1921b, p.
541) and Fisher (1911, p. 534; 1922, p. 64).

17.45 The next two tests are more controversial, since they are not necessarily consistent
with the economic approach to index number theory. However, these tests are quite
consistent with the weighted stochastic approach to index number theory to be discussed later
in this chapter.

T12—Quantity Reversal Test (quantity weights symmetry test): P(p°p'.q’q') =
P@°p'q'4).

That is, if the quantity vectors for the two periods are interchanged, then the price index
remains invariant. This property means that if quantities are used to weight the prices in the
index number formula, then the period 0 quantities ¢° and the period 1 quantities ¢' must
enter the formula in a symmetric or evenhanded manner. Funke and Voeller (1978, p. 3)
introduced this test; they called it the weight property.

17.46 The next test is the analogue to T12 applied to quantity indices:
T13—Price Reversal Test (price weights symmetry test):*
>.plg >.pld;

(17.18) | = P(p’.p.q’.q") = 2 P(p'.p".q".q").

> g’ > plg!
i=1 i=1

Thus, if we use equation (17.17) to define the quantity index Q in terms of the price index P,
then it can be seen that T13 is equivalent to the following property for the associated quantity
index Q:

(17.19) 0(p°, p'.4°,4") = 0(p". P°.4",q").

*This test was proposed by Diewert (1992a, p. 218).



That is, if the price vectors for the two periods are interchanged, then the quantity index
remains invariant. Thus, if prices for the same good in the two periods are used to weight
quantities in the construction of the quantity index, then property T13 implies that these
prices enter the quantity index in a symmetric manner.

C.4 Mean value tests
17.47 The next three tests are mean value tests.

T14—Mean Value Test for Prices *':
(17.20) min,(p!/p’ :i = 1,..n)<P(p°,p',q°,q") <max,(p)/p’ :i = 1,..n).

That is, the price index lies between the minimum price ratio and the maximum price ratio.
Since the price index is supposed to be interpreted as kind of average of the n price ratios,
pitlp, it seems essential that the price index p satisfy this test.

17.48 The next test is the analogue to T14 applied to quantity indices:

T15—Mean Value Test for Quantities:>

. : v Y
(17.21) min,(q' /q’ :i = 1,...,n) < <max,(q /q :i = 1,.,n),
/ P(p’.p'.q".q") /
where V" is the period ¢ value for the aggregate defined by equation (17.1) above. Using the
product test equation (17.17) to define the quantity index Q in terms of the price index P, it
can be seen that T15 is equivalent to the following property for the associated quantity index

0:
(17.22) min,(q//q’ :i=1,..n) <O@’,p',q",q") <max,(q//q :i=1,..,n).

That is, the implicit quantity index Q defined by P lies between the minimum and maximum
rates of growth ¢;'/g;° of the individual quantities.

17.49 In Section C of Chapter 16, it was argued that it was reasonable to take an average of
the Laspeyres and Paasche price indices as a single best measure of overall price change.
This point of view can be turned into a test:

T16—Paasche and Laspeyres Bounding Test:® The price index P lies between the Laspeyres
and Paasche indices, P, and Pp, defined by equations (16.5) and (16.6) in Chapter 16.

*!This test seems to have been first proposed by Eichhorn and Voeller (1976, p. 10).
*This test was proposed by Diewert (1992a, p. 219).
»Bowley (1901, p. 227) and Fisher (1922, p. 403) both endorsed this property for a price index.



A test could be proposed where the implicit quantity index Q that corresponds to P via
equation (17.17) is to lie between the Laspeyres and Paasche quantity indices, Op and Oy,
defined by equations (16.10) and (16.11) in Chapter 16. However, the resulting test turns out
to be equivalent to test T16.

C.5 Monotonicity tests

17.50 The final four tests are monotonicity tests; that is, how should the price index
P(p°.p'.q".q") change as any component of the two price vectors p° and p' increases or as any
component of the two quantity vectors ¢° and ¢' increases?

T17—Monotonicity in Current Prices: P(p°,p',q".¢") < P’ p*.¢".q") if p' < p°.

That is, if some period 1 price increases, then the price index must increase, so that
PP’ p'.q°,q") is increasing in the components of p'. This property was proposed by Eichhorn
and Voeller (1976, p. 23), and it is a reasonable property for a price index to satisfy.

T18—Monotonicity in Base Prices: P(p°p'.q°.q") > P(0*.p' .4°,q") if p° < p*.
That is, if any period O price increases, then the price index must decrease, so that
P(p°.p'.q".q") is decreasing in the components of p° . This quite reasonable property was also
proposed by Eichhorn and Voeller (1976, p. 23).
T19—Monotonicity in Current Quantities: If ¢' < ¢*, then

> plq] >

(17.23) | =——| [P°, p'.q°,q") <| =——| [P(p°,P".q°,q).

> pla > plat
i=1 i=1

T20—Monotonicity in Base Quantities: If ¢° < ¢*, then

Zn:p-lq-l Zn:p?q-l
(17.24) | =——| [P(P°.p'.q".q") > Z——| [P(p°.p".4".q").

> plq’ > plq’
i1 i1

17.51 Let Q be the implicit quantity index that corresponds to P using equation (17.17).
Then it is found that T19 translates into the following inequality involving Q:

(17.25) 0(p°.r'.4".4"H< 0. p'.¢".¢") if ¢'<q’.

That is, if any period 1 quantity increases, then the implicit quantity index Q that corresponds
to the price index P must increase. Similarly, we find that T20 translates into:

(17.26) 0(p°.p'.q".4")>0(p".p'.4°.4") if ¢°<q’.



That is, if any period 0 quantity increases, then the implicit quantity index O must decrease.
Tests T19 and T20 are due to Vogt (1980, p. 70).

17.52 This concludes the listing of tests. In the next section, it is asked whether any index
number formula P(p°,p',¢°,¢") exists that can satisfy all 20 tests.

C.6 Fisher Ideal index and test approach

17.53 It can be shown that the only index number formula P(p°,p'.¢",¢") that satisfies tests
T1-T20 is the Fisher ideal price index Pr, defined as the geometric mean of the Laspeyres
and Paasche indices:**

1/2
(17.27)  P.(p*,p'¢",4) = {B.(p°.P'.¢".4) PP’ p'q" ")}

To prove this assertion, it is relatively straightforward to show that the Fisher index satisfies
all 20 tests.

17.54 The more difficult part of the proof is showing that it is the only index number
formula that satisfies these tests. This part of the proof follows from the fact that if P satisfies
the positivity test T1 and the three reversal test, T11-T13, then P must equal Pr. To see this,
rearrange the terms in the statement of test T13 into the following equation:

n l 1/ n 0 0
(17.28) ;p'q' ;p'q’ _ PR p4"q")
S plg iyl PP
i=1 i=1
— P(poaplaqoaql)
P(p',p".9",q")

using T12, the quantity reversal test

=P(p’.p'.q".q") using T11, the time reversal test.

Now take positive square roots on both sides of equation (17.28) and it can be seen that the
left-hand side of the equation is the Fisher index Pr(p°,p'.¢",¢") defined by equation (17.27)
and the right-hand side is P(po,pl,qo,ql). Thus, if P satisfies T1, T11, T12, and T13, it must
equal the Fisher ideal index Pp.

17.55 The quantity index that corresponds to the Fisher price index using the product test
equation (17.17) is QF , the Fisher quantity index, defined by equation (15.14) in Chapter 16.

17.56 It turns out that Pr satisfies yet another test, T21, which was Irving Fisher's (1921, p.
534; 1922. pp. 72—81) third reversal test (the other two being T9 and T11):

*See Diewert (1992a, p. 221).



T21—Factor Reversal Test (functional form symmetry test):

2. pid;
(1729) P(Poapl,qoaql)P(‘JanlaPOaPl)=',,:l—

> plal
i=1

A justification for this test is the following: assume P(p°,p',¢°,¢") is a good functional form
for the price index, then if the roles of prices and quantities are reversed, P(¢°,¢',p%,p") ought
to be a good functional form for a quantity index (which seems to be a correct argument).
The product, therefore, of the price index P(¢%,¢'.,p",p') and the quantity index O(¢°,¢'.p°.p")
= P(¢".q" p"p") ought to equal the value ratio, ¥'/F"° . The second part of this argument does
not seem to be valid; consequently, many researchers over the years have objected to the
factor reversal test. However, if one is willing to embrace T21 as a basic test, Funke and
Voeller (1978, p. 180) showed that the only index number function P(q°,q',p"p') that
satisfies T1 (positivity), T11 (time reversal test), T12 (quantity reversal test) and T21 (factor
reversal test) is the Fisher ideal index Pr defined by equation (17.27). Thus, the price reversal
test T13 can be replaced by the factor reversal test in order to obtain a minimal set of four
tests that lead to the Fisher price index.”

C.7 Test performance of other indices

17.57 The Fisher price index Pr satisfies all 20 of the tests listed in Sections C.1-C.5.
Which tests do other commonly used price indices satisfy? Recall the Laspeyres index P;
defined by equation (16.5), the Paasche index Pp defined by equation (16.6), the Walsh index
Py defined by equation (16.19) and the Tornqvist index Pr defined by equation (16.81) in
Chapter 16.

17.58 Straightforward computations show that the Paasche and Laspeyres price indices, Py,
and Pp, fail only the three reversal tests, T11, T12, and T13. Since the quantity and price
reversal tests, T12 and T13, are somewhat controversial and can be discounted, the test
performance of P, and Pp seems at first glance to be quite good. However, the failure of the
time reversal test, T11, is a severe limitation associated with the use of these indices.

17.59 The Walsh price index, Py, fails four tests: T13, the price reversal test; T16, the
Paasche and Laspeyres bounding test; T19, the monotonicity in current quantities test; and
T20, the monotonicity in base quantities test.

17.60 Finally, the Tornqvist price index P fails nine tests: T4, the fixed-basket test; T12
and T13, the quantity and price reversal tests, T15, the mean value test for quantities, T16,
the Paasche and Laspeyres bounding test, and T17-T20, the four monotonicity tests. Thus,

3Other characterizations of the Fisher price index can be found in Funke and Voeller (1978) and Balk (1985,
1995).



the Tornqvist index is subject to a rather high failure rate from the viewpoint of this
axiomatic approach to index number theory.*

17.61 The tentative conclusion that can be drawn from these results is that from the
viewpoint of this particular bilateral test approach to index numbers, the Fisher ideal price
index Pr appears to be best because it satisfies all 20 tests.”’” The Paasche and Laspeyres
indices are next best if we treat each test as being equally important. However, both of these
indices fail the very important time reversal test. The remaining two indices, the Walsh and
Tornqvist price indices, both satisfy the time reversal test, but the Walsh index emerges as
the better one because it passes 16 of the 20 tests, whereas the Tornqvist satisfies only 11
tests.

C.8 Additivity test

17.62 There is an additional test that many national income accountants regard as very
important: the additivity test. This is a test or property that is placed on the implicit quantity
index O(¢°,¢',p°,p") that corresponds to the price index P(¢".¢",p°,p") using the product test in
equation (17.17). This test states that the implicit quantity index has the following form:

> pld!
(1730) Q(poaplaqoaql)zl:l—a

> .4,
m=1

where the common across-periods price for product i, p;/* for i = 1,...,n, can be a function of
all 4n prices and quantities pertaining to the two periods or situations under consideration,
P°p'.q’q'. In the literature on making multilateral comparisons (that is, comparisons
between more than two situations), it is quite common to assume that the quantity
comparison between any two regions can be made using the two regional quantity vectors, ¢°
and ¢', and a common reference price vector, p* = (pi*,...,p,*). >

17.63 Different versions of the additivity test can be obtained if further restrictions are
placed on precisely which variables each reference price p;* depends on. The simplest such
restriction is to assume that each p;* depends only on the product i prices pertaining to each
of the two situations under consideration, p,-0 and pil. If it is further assumed that the

**However, it will be shown later in Chapter 19 that the Tornqvist index approximates the Fisher index quite
closely using normal time-series data that are subject to relatively smooth trends. Under these circumstances,
the Tornqvist index can be regarded as passing the 20 tests to a reasonably high-degree of approximation.

This assertion needs to be qualified: there are many other tests that we have not discussed, and price
statisticians could differ on the importance of satisfying various sets of tests. Some references that discuss other
tests are Auer (2001; 2002), Eichhorn and Voeller (1976), Balk (1995), and Vogt and Barta (1997). In Section
E, it is shown that the Tornqvist index is ideal for a different set of axioms.

Hill (1993, pp. 395-397) termed such multilateral methods the block approach, while Diewert (1996a, pp.
250-51) used the term average price approaches. Diewert (1999b, p. 19) used the term additive multilateral
system. For axiomatic approaches to multilateral index number theory, see Balk (1996a, 2001) and Diewert
(1999b).



functional form for the weighting function is the same for each product, so that p/* =
m(p.p) for i = 1,....n, then we are led to the unequivocal quantity index postulated by
Knibbs (1924, p. 44).

17.64 The theory of the unequivocal quantity index (or the pure quantity index’®) parallels
the theory of the pure price index outlined in Section C.2 of Chapter 16. An outline of this
theory is now given. Let the pure quantity index Ok have the following functional form:

< 1 0 1

qim(pi ’pi)

(17.31) QK(pO,pl,qoaql)E%:—'
2 am(p}spy)

k=1

It is assumed that the price vectors p° and p' are strictly positive, and the quantity vectors ¢
and ¢' are nonnegative but have at least one positive component.”’ The problem is to
determine the functional form for the averaging function m if possible. To do this, it is
necessary to impose some tests or properties on the pure quantity index Qg. As was the case
with the pure price index, it is reasonable to ask that the quantity index satisfy the time
reversal test:

1
0. (p’.p'.q".q")

(17.32) 0. (»'.p".q'.q") =

17.65 As was the case with the theory of the unequivocal price index, it can be seen that if
the unequivocal quantity index Qk is to satisfy the time reversal test of equation (17.32), the
mean function in equation (17.31) must be symmetric. It is also asked that Ok satisfy the
following invariance to proportional changes in current prices test.

(17.33) 0. (P’ M".¢",4")=0, (P, p".q",q") forallp’,p',q°,q" andallX>0.

17.66 The idea behind this invariance test is this: the quantity index Qx(p",p',¢",¢") should
only depend on the relative prices in each period. It should not depend on the amount of
general inflation between the two periods. Another way to interpret equation (17.33) is to
look at what the test implies for the corresponding implicit price index, P, defined using the
product test of equation (17.17). It can be shown that if O satisfies equation (17.33), then the
corresponding implicit price index P will satisfy test TS, the proportionality in current
prices test. The two tests in equations (17.32) and (17.33), determine the precise functional

*Diewert (2001) used this term.
It is assumed that m(a,b) has the following two properties: m(a,b) is a positive and continuous function,
defined for all positive numbers a and b; and m(a,a) = a for all a > 0.



form for the pure quantity index Qk defined by equation (17.31): the pure quantity index or
Knibbs’ unequivocal quantity index Qg must be the Walsh quantity index Qy*' defined by

- l' 0 _1
17.34 PRI ki
(17.34) 0,(p’.p'.q",94") ==

> a.\pip
k=1

17.67 Thus, with the addition of two tests, the pure price index Px must be the Walsh price
index Py defined by equation (16.19) in Chapter 16.With the addition of the same two tests
(but applied to quantity indices instead of price indices), the pure quantity index Ox must be
the Walsh quantity index Qy defined by equation (17.34). However, note that the product of
the Walsh price and quantity indices is nof equal to the revenue ratio, /"'//°. Thus, believers
in the pure or unequivocal price and quantity index concepts have to choose one of these two
concepts; they cannot apply both simultaneously.*

17.68 If the quantity index O(¢°,¢',p°,p") satisfies the additivity test in equation (17.30) for
some price weights p;*, then the percentage change in the quantity aggregate, 0(¢".¢",p".p") —
1, can be rewritten as follows:

n *l n *] n B 0

S Z]p,.q,- ;pi%—z;pmqm .

(17.35) 0(p’.p'.q".q")-1=—= —1=- =2 wilg -4,
i=1

> pod, Zn:p;q,(i
m=1

m=1

where the weight for product 7, w;, is defined as

5

(17.36) w=—Lr—; i=1,.n.

n

* 0
z Puln
m=1

Note that the change in product i going from situation 0 to situation 1 is ¢;' — ¢.’. Thus, the
ith term on the right-hand side of equation (17.35) is the contribution of the change in
product i to the overall percentage change in the aggregate going from period 0 to 1.
Business analysts often want statistical agencies to provide decompositions like equation
(17.35) so they can decompose the overall change in an aggregate into sector-specific
components of change.” Thus, there is a demand on the part of users for additive quantity
indices.

*IThis is the quantity index that corresponds to the price index 8 defined by Walsh (1921a, p. 101).

*Knibbs (1924) did not notice this point!

“Business and government analysts also often demand an analogous decomposition of the change in price
aggregate into sector-specific components that add up.



17.69 For the Walsh quantity index defined by equation (17.34), the ith weight is

0 _.1
(17.37) w, =— 2P
D qu oD,

m=1

;o i=1,..n

Thus, the Walsh quantity index Qy has a percentage decomposition into component changes
of the form in equation (17.35) where the weights are defined by equation (17.37).

17.70 It turns out that the Fisher quantity index Or defined by equation (16.14) in Chapter
16 also has an additive percentage change decomposition of the form given by equation
(17.35).* The ith weight wg; for this Fisher decomposition is rather complicated and depends
on the Fisher quantity index Ox(p°,p',¢".q") as follows*:

0 2 1
(1738) w, =2t @wi iy
' 1+ 0.

where O is the value of the Fisher quantity index, O#(p’p'.¢".¢"), and the period ¢
normalized price for product i, w/, is defined as the period i price p; divided by the period ¢
revenue on the aggregate:

t

(1739) w=—"Lr . ¢t =01;i=1,.n

> pod,

m=1

17.71 Using the weights wg; defined by equations (17.38) and (17.39), the following exact
decomposition is obtained for the Fisher ideal quantity index*:

(17.40) 0.(p°.p'.4".a") 1= w.(q, - q)).

i=1

Thus, the Fisher quantity index has an additive percentage change decomposition.

*The Fisher quantity index also has an additive decomposition of the type defined by equation (17.30) due to
Van Ijzeren (1987, p. 6). The ith reference price p;* is defined as p;* = (1/2)p° + (122)p;'/P(p°p".¢",q") for i =
1,...,n and where Pr is the Fisher price index. This decomposition was also independently derived by Dikhanov
(1997). The Van Ijzeren decomposition for the Fisher quantity index is currently being used by the Bureau of
Economic Analysis; see Moulton and Seskin (1999, p. 16) and Ehemann, Katz, and Moulton (2002).

This decomposition was obtained by Diewert (2002a) and Reinsdorf, Diewert, and Ehemann (2002). For an
economic interpretation of this decomposition, see Diewert (2002a).

*To verify the exactness of the decomposition, substitute equation (17.38) into equation (17.40) and solve the
resulting equation for Q. It is found that the solution is equal to Or defined by (16.14) in Chapter 16.



17.72 Due to the symmetric nature of the Fisher price and quantity indices, it can be seen
that the Fisher price index Pr defined by equation (17.27) also has the following additive
percentage change decomposition:

(17.41) P.(p".p'.q".q4")=1=D v (! = P)),

i=1
where the product i weight vz is defined as

O (P
(17.42) v, =2t Ev oy
’ 1+ P.

where Pr is the value of the Fisher price index, Pr(p",p",¢",¢"), and the period ¢ normalized
quantity for product i, v/, is defined as the period i quantity g;' divided by the period ¢
revenue on the aggregate:

t

(1743) v=—2 . 1 =01; i =1,..n

n

> i,
m=1

17.73 The above results show that the Fisher price and quantity indices have exact additive
decompositions into components that give the contribution to the overall change in the price
(or quantity) index of the change in each price (or quantity).

D. Stochastic Approach to Price Indices
D.1 Early unweighted stochastic approach

17.74 The stochastic approach to the determination of the price index can be traced back to
the work of Jevons (1863, 1865) and Edgeworth (1888) over a hundred years ago.** The basic
idea behind the (unweighted) stochastic approach is that each price relative, p;'/p for i =
1,2,...,n can be regarded as an estimate of a common inflation rate o between periods 0 and
1;* that is, it is assumed that

1
(17.44) Licate; i=12,.n,

i

7 An overview of additive and multiplicative decompositions of the Fisher indices was given by Balk (2004),
“Decompositions of Fisher Indexes”, Economics Letters 82, 107-113.

*Eor references to the literature, see Diewert (1993a, pp. 37-38; 1995a; 1995b).

#In drawing our averages the independent fluctuations will more or less destroy each other; the one required
variation of gold will remain undiminished” (W. Stanley Jevons, 1863, p. 26).



where o is the common inflation rate and the g; are random variables with mean 0 and
variance o 2. The least squares or maximum likelihood estimator for o is the Carli (1764)
price index Pc¢ defined as

n

1 p
(17.45) P.(p’,pH)=> L.

i=1 i

A drawback of the Carli price index is that it does not satisfy the time reversal test, that is,
Pc(p'.p) = 1/ Pe(p® ph). >

17.75 Now change the stochastic specification and assume that the logarithm of each price
relative, In(p;'/p;°), is an unbiased estimate of the logarithm of the inflation rate between
periods 0 and 1, 3 say. The counterpart to equation (17.44) is:

1
(17.46) ln(%) =B+e; i=12,n

where B = In a and the g; are independently distributed random variables with mean 0 and
variance ¢ *. The least squares or maximum likelihood estimator for P is the logarithm of the
geometric mean of the price relatives. Hence, the corresponding estimate for the common

inflation rate o' is the Jevons (1865) price index P; defined as follows:
1

(17.47) P,(p".pH =] [ 4 2%

i=1 i

17.76 The Jevons price index P, does satisfy the time reversal test and thus is much more
satisfactory than the Carli index Pc. However, both the Jevons and Carli price indices suffer
from a fatal flaw: each price relative p;'/p;° is regarded as being equally important and is
given an equal weight in the index number equations (17.45) and (17.47). Keynes was
particularly critical of this unweighted stochastic approach to index number theory.”> He

In fact, Fisher (1922, p. 66) noted that Po(p°’,p")Pc(p',p®) > 1 unless the period 1 price vector p' is
proportional to the period 0 price vector p°. He urged statistical agencies not to use this formula. Walsh (1901,
pp- 331 and 530) also discovered this result for the case n = 2.

n 1
*Greenlees (1999) pointed out that although lZ:ln [p_:)J is an unbiased estimator for {3, the corresponding
nio i
exponential of this estimator, P; defined by equation (17.47), will generally not be an unbiased estimator for o
under our stochastic assumptions. To see this, let x; = In (p;'/p,"). Taking expectations, we have: Ex; = = In o..
Define the positive, convex function f of one variable x by f{x) = ¢'. By Jensen’s (1906) inequality, Ef(x) > f(Ex).
Letting x equal the random variable x;, this inequality becomes: E(p;'/p.°) = Efix;) > fiEx;) =f(f) = &’ = " * = a..
Thus, for each 1, E(p;'/p’) > o, and it can be seen that the Jevons price index will generally have an upward bias
under the usual stochastic assumptions.

**Walsh (1901, p. 83) also stressed the importance of proper weighting according to the economic importance
of the commodities in the periods being compared: “But to assign uneven weighting with approximation to the
relative sizes, either over a long series of years or for every period separately, would not require much
(continued)



directed the following criticism toward this approach, which was vigorously advocated by
Edgeworth (1923):

Nevertheless I venture to maintain that such ideas, which I have endeavoured to expound above as
fairly and as plausibly as I can, are root-and-branch erroneous. The “errors of observation”, the “faulty
shots aimed at a single bull’s eye” conception of the index number of prices, Edgeworth’s “objective
mean variation of general prices”, is the result of confusion of thought. There is no bull’s eye. There is
no moving but unique centre, to be called the general price level or the objective mean variation of
general prices, round which are scattered the moving price levels of individual things. There are all the
various, quite definite, conceptions of price levels of composite commodities appropriate for various
purposes and inquiries which have been scheduled above, and many others too. There is nothing else.
Jevons was pursuing a mirage.

What is the flaw in the argument? In the first place it assumed that the fluctuations of individual prices
round the “mean” are “random” in the sense required by the theory of the combination of independent
observations. In this theory the divergence of one “observation” from the true position is assumed to
have no influence on the divergences of other “observations”. But in the case of prices, a movement in
the price of one product necessarily influences the movement in the prices of other commodities,
whilst the magnitudes of these compensatory movements depend on the magnitude of the change in
revenue on the first product as compared with the importance of the revenue on the commodities
secondarily affected. Thus, instead of “independence”, there is between the “errors” in the succe