
 

21.   Elementary Indices  
 
A.   Introduction 

21.1 The subject of this chapter is the appropriate formula(s) to use when the aggregation 
of price changes does not benefit from information on weights. The absence of information 
on weights is invariably at the lower, elementary, level of aggregation. The resulting indices 
from these elementary aggregates are referred to as elementary aggregate indices, or more 
simply, elementary indices. At the next stage of aggregation weights are applied to the 
elementary indices, and weights are again applied to the resulting indices at higher stages of 
aggregation, until an overall index is derived. 

21.2 The main concern of this chapter is with the choice of the most appropriate 
unweighted index number formula for the elementary indices. It is stressed that the choice of 
the most appropriate elementary index formula is a second-best solution. The optimum 
strategy is to attempt to obtain information on the values of goods purchased as imports, or 
sold as exports, and apply weights at all stages of aggregation.  

21.3 Data on prices may be unit values from the records on foreign trade transactions 
maintained by national customs authorities, or from the records of transactions by a surveyed 
establishment. A unit value for a specified periods of time is obtained, for a commodity 
classification or specified commodity, by dividing the value traded by the corresponding 
quantity. A unit value elementary index is derived by dividing, for the same commodity 
classification or commodity, the unit value in the current period by the unit value in the base 
period. The calculation of a unit value at the elementary aggregate level thus makes implicit 
use of information on quantities; there is some form of weighting at this elementary level. In 
particular, it is shown below in Section B that as the prices and quantities of the same, very 
narrowly defined, commodity vary within a reporting period, say a month, a unit value index, 
as a surrogate measure of price changes, weights the price changes according to their 
corresponding quantities: it solves the time aggregation problem.  

21.4 There is a history to the use of unit value indices derived from customs data as the 
principle method for compiling trade price indices. The unit values for such indices are 
surrogates for prices in each of the two periods. Each unit value index, derived for a detailed 
commodity classification, has a weight attached to it for aggregation to a higher level of 
classification. However, the commodity composition in customs data, for which the unit 
values are compared over time, is generally not homogeneous; the product mix and its 
quality can vary over time. As such unit value indices from customs data may not just reflect 
price changes. They are prone to bias and should only be used in circumstances where the 
product mix and quality of items compared over time can be reliably taken to be unchanging. 
Unit value indices and their properties were considered in detail in Chapter 2. Unit values 
from customs data are used as proxies for prices and unit value indices as proxies for price 
changes. The concern of this chapter is the formula to use when an index is to be calculated 
of establishment survey prices or customs unit values for which there is no information on 
quantities or values.  



 

 

21.5 Price data collected from price surveys of establishments should relate to specified 
commodities whose quality characteristics are well specified so that changes in product mix 
and quality are not reflected in the price index. The “prices” recorded may be unit values for 
a batch of sales or purchases, but they will be defined for tightly specified 
commodities/transactions selected from detailed commodity categories, from establishments. 
Each establishment also should have available information on the traded values associated 
with these prices for the selected commodities within each commodity category. The use of 
explicit weights at this elementary level of aggregation can but benefit the index. It is 
common in CPI compilation that the aggregation of prices across different outlets of the 
prices of relatively homogeneous items is undertaken using unweighted aggregation 
formulas. For a, for example, geometric mean of price changes, each outlet’s price change 
has an equal weight ascribed to it, irrespective of the importance of the relative sales of the 
outlet. For XMPIs and PPIs the direct contact with the responding establishment may allow 
highly detailed data to be made available, possibly electronically, on prices and 
quantities/values in a manner that is not feasible for price collectors visiting outlets for CPI 
data collection. Where possible, the first stage of aggregation for XMPIs should include 
weighting information. The issue of which index number formula to use for the aggregation 
of weighted price changes was the subject of Chapters 16 to 18. 

21.6 It should be noted that even if information on prices and values are collected, the 
estimation of the weights to use at the lower level should take account of the sample design 
used in the selection of commodities/establishments. Consider, for example, the selection of 
establishments of which the single largest establishment, say responsible for an export value 
of 8,000 of exports, for a category, was selected using cut-off sampling. Consider further the 
selection of say ten establishments at random from the remaining twenty establishments on 
the sampling frame, each of which are found, for simplicity, to be responsible for the same 
export value of 100. The weight for the single large establishment would be: 

( )8 000 8 000 1 0 10 100 0 5 0 8, / , / . / . .+ × =⎡ ⎤⎣ ⎦   

and, for each of the ten small ones selected: 

( )100 0 5 8 000 1 0 10 100 0 5 0 02/ . , / . / . .+ × =⎡ ⎤⎣ ⎦ .  

The weights for the establishments are adjusted to take into account the probability of 
selecting the establishment, as determined by the sample design. 

21.7 More generally, information on weights may not be available to be directly 
incorporated into the aggregation formula, but such information may be implicit in the 
sample design. Unweighted commodity price changes from establishments selected at 
random with, say, probability proportional to expenditure shares in the base period, can be 
considered to be sample estimators of a base-period expenditure weighted population index 
number formula. Such considerations are examined below in Section G. 

21.8 The principle concern of this Chapter is with the choice of formula when no data on 
weights are available, neither explicitly nor implicitly, by way of the sample design, nor by 



 

 

construction as unit values for a homogeneous commodity. Alternative formula for such 
unweighted aggregation are considered by recourse to the axiomatic, economic, and  
sampling approaches to elementary indices in Sections E, F, and G below. 

21.9 If the compilation of XMPIs at the lower level does not benefit from the availability 
of information on weights, then there are two distinct stages to the index number 
compilation. In the first stage of calculation, elementary price indices are estimated for the 
elementary aggregates of the trade price index. In the second and higher stages of 
aggregation, these elementary price indices are combined to obtain higher-level indices using 
information on the trade values on each elementary aggregate as weights. Elementary 
aggregate indices by definition do not use weighted index number formula. The scope of the 
elementary aggregates would be relatively homogeneous sets of commodities defined within 
the industrial classification used in the XMPIs. Samples of prices would be collected within 
each elementary aggregate, so that elementary aggregates serve as strata for sampling 
purposes. 

21.10 Data on the revenues, or quantities, of different goods and services are thus not 
available within an elementary aggregate. Since there are no quantity or revenue weights, 
most of the index number theory outlined from Chapter 16 to 20 is not directly applicable. As 
was noted in Chapter 1, an elementary price index is a more primitive concept that often 
relies on price data only.  

21.11 The question of which is the most appropriate formula to use to estimate an 
elementary price index is considered in this chapter. For commodity groups in which weights 
are unavailable at this elementary level the quality of XMPIs depends heavily on the quality 
of the elementary indices, which are the basic building blocks from which the XMPIs are 
constructed.  

21.12 As was explained in Chapter 6, compilers have to select representative commodities 
within an elementary aggregate and then collect a sample of prices for each of the 
representative commodities, usually from a sample of different establishments. The 
individual commodities whose prices actually are collected are described as the sampled 
commodities. Their prices are collected over a succession of time periods. An elementary 
price index is therefore typically calculated from two sets of matched price observations. It is 
assumed in this chapter that there are no missing observations and no changes in the quality 
of the commodities sampled, so that the two sets of prices are perfectly matched. The 
treatment of new and disappearing commodities, and of quality change, is a separate and 
complex issue that was discussed in detail in Chapters 8 and 9, and will be continued in 
Chapter 22 of this Manual.  

21.13 Even though quantity or traded value weights are usually not available to weight the 
individual elementary price quotes, it is useful to consider an ideal framework where such 
information is available. This is done in Section B. The problems involved in aggregating 
narrowly defined price quotes over time also are discussed in this section. Thus, the 
discussion in Section B provides a theoretical target for practical elementary price indices 
constructed using only information on prices, which is shown to be a unit value index. This 
ideal framework and its findings remain important as a benchmark against which elementary 



 

 

index number formula can be considered. Indeed one feature of the idealized measure is its 
requirement of commodity homogeneity and this limitation of unit value indices is explored 
in Section I.     

21.14 Section C introduces the main elementary index formulas used in practice and 
Section D develops some numerical relationships between the various indices. Chapters 15 
to17 developed the various approaches to index number theory when information on both 
prices and quantities was available. It also is possible to develop axiomatic, economic, or 
sampling approaches to elementary indices and these three approaches are discussed below in 
Sections E, F, and G. Section H develops a simple statistical approach to elementary indices 
that resembles a highly simplified hedonic regression model. Section I concludes with an 
overview of the various results.1 

B.   Ideal Elementary Indices 

21.15 The aggregates covered by XMPIs, a CPI or a PPI usually are arranged in the form 
of a tree-like hierarchy, such as the Harmonized Commodity Description and Coding System 
(HS), the Classification of Individual Consumption by Purpose (COICOP), or  the General 
Industrial Classification of Economic Activities within the European Communities (NACE). 
An aggregate is a set of economic transactions pertaining to a set of commodities over a 
specified time period. Every economic transaction relates to the change of ownership of a 
specific, well-defined commodity (good or service) at a particular place and date, and comes 
with a quantity and a price. The price index for an aggregate is calculated as a weighted 
average of the price indices for the subaggregates, the weights and type of average being 
determined by the index formula. One can descend in such a hierarchy as far as available 
information allows the weights to be decomposed. The lowest level aggregates are called 
elementary aggregates. They are basically of two types: 

 
(i) Those for which all detailed price and quantity information is available, and 
(ii) Those for which the statistician, considering the operational cost and the response 

burden of getting detailed price and quantity information about all the transactions, 
decides to make use of a representative sample of commodities or respondents. 

 
The practical relevance of studying this topic is large. Since the elementary aggregates form 
the building blocks of XMPIs, the choice of an inappropriate formula at this level can have a 
tremendous impact on the overall index. 
 
21.16 In this section, it will be assumed that detailed price and quantity information are 
available for all transactions pertaining to the elementary aggregate for the two time periods 
under consideration. This assumption allows us to define an ideal elementary aggregate. 
Subsequent sections will relax this strong assumption about the availability of detailed price 

                                                 
1This chapter draws heavily on the recent contributions of Dalén (1992), Balk (1994, 1998b, 2002) and 

Diewert (1995a, 2002a, 2002b). 



 

 

and quantity data on transactions, but it is necessary to have a theoretically ideal target for 
the practical elementary index. 

21.17 The detailed price and quantity data, although perhaps not available to the 
statistician, are, in principle, available in the outside world. It is frequently the case that at the 
respondent level (that is, at the firm level), some aggregation of the individual transactions 
information has been executed, usually in a form that suits the respondent’s financial or 
management information system. This respondent determined level of information could be 
called the basic information level. This is, however, not necessarily the finest level of 
information that could be made available to the price statistician. One could always ask the 
respondent to provide more disaggregated information. For instance, instead of monthly data, 
one could ask for weekly data; or, whenever appropriate, one could ask for regional instead 
of global data; or, one could ask for data according to a finer commodity classification. The 
only natural barrier to further disaggregation is the individual transaction level.2 

21.18 It is now necessary to discuss a problem that arises when detailed data on individual 
transactions are available. This may occur at the individual establishment level, or even for 
individual production runs. Recall that in Chapter 16, the price and quantity indexes, 
P(p0,p1,q0,q1) and Q(p0,p1,q0,q1), were introduced. These (bilateral) price and quantity indices 
decomposed the value ratio V1/V0 into a price change part P(p0,p1,q0,q1) and a quantity 
change part Q(p0,p1,q0,q1). In this framework, it was taken for granted that the period t price 
and quantity for commodity i, pi

t and qi
t, were well defined. However, these definitions are 

not straightforward, since individual purchasers may buy the same commodity during period 
t at different prices. Similarly, consider the sales of a particular establishment, the same 
commodity may sell at very different prices during the course of the period. Hence before a 
traditional bilateral price index of the form P(p0,p1,q0,q1) considered in previous chapters of 
this Manual can be applied, there is a nontrivial time aggregation problem to obtain the basic 
prices pi

t and qi
t that are the components of the price vectors p0 and p1 and the quantity 

vectors q0 and q1. Walsh3 (1901, 1921) and Davies (1924, 1932), suggested a solution in a 
CPI context to this time aggregation problem: the appropriate quantity at this very first stage 
of aggregation is the total quantity purchased of the narrowly defined commodity, and the 
corresponding price is the value of purchases of this commodity divided by the total amount 
purchased, which is a narrowly defined unit value. The appropriate unit value for an MPI or 
XPI context is the value of revenue divided by the total amount sold. In more recent times, 
other researchers have adopted the Walsh and Davies solution to the time aggregation 

                                                 
2See Balk (1994) for a similar approach. 
3Walsh explained his reasoning as follows: “Of all the prices reported of the same kind of article, the average 

to be drawn is the arithmetic; and the prices should be weighted according to the relative mass quantities that 
were sold at them (1901, p. 96). “Some nice questions arise as to whether only what is consumed in the country, 
or only what is produced in it, or both together are to be counted; and also there are difficulties as to the single 
price quotation that is to be given at each period to each commodity, since this, too, must be an average. 
Throughout the country during the period a commodity is not sold at one price, nor even at one wholesale price 
in its principal market. Various quantities of it are sold at different prices, and the full value is obtained by 
adding all the sums spent (at the same stage in its advance towards the consumer), and the average price is 
found by dividing the total sum (or the full value) by the total quantities (1921, p. 88). 



 

 

problem.4 Note that this solution to the time aggregation problem has the following 
advantages: 

(i)  The quantity aggregate is intuitively plausible, being the total quantity of the 
narrowly defined commodities sold by establishments during the time period under 
consideration, and 

(ii) The price times quantity of the commodity equals the total revenue or value sold by 
the establishment during the time period under consideration. 

 
This solution will be adopted to the time aggregation problem as a valid concept for the price 
and quantity at this first stage of aggregation. 
 
21.19 Having decided on an appropriate theoretical definition of price and quantity for an 
commodity at the very lowest level of aggregation (that is, a narrowly defined unit value and 
the total quantity sold of that commodity by the individual establishment), it is now 
necessary to consider how to aggregate these narrowly defined elementary prices and 
quantities into an overall elementary aggregate. Suppose that there are M lowest level items, 
or specific commodities, in this chosen elementary category. Denote the period t quantity of 
commodity m by qm

t and the corresponding time aggregated unit value by pm
t for t = 0,1 and 

for commodities m = 1,2,...,M. Define the period t quantity and price vectors as qt ≡ 
[q1

t,q2
t,...,qM

t] and pt ≡ [p1
t,p2

t,...,pM
t] for t = 0,1. It is now necessary to choose a theoretically 

ideal index number formula P(p0,p1,q0,q1) that will aggregate the individual commodity 
prices into an overall aggregate price relative for the M commodities in the chosen 
elementary aggregate. However, this problem of choosing a functional form for P(p0,p1,q0,q1) 
is identical to the overall index number problem that was addressed in Chapters 15 to 17. In 
these chapters, four different approaches to index number theory were studied that led to 
specific index number formulas as being best from each perspective. From the viewpoint of 
fixed basket approaches, it was found that the Fisher (1922) and Walsh (1901) price indexes, 
PF and PW, appeared to be best. From the viewpoint of the test approach, the Fisher index 
appeared to be best. From the viewpoint of the stochastic approach to index number theory, 
the Törnqvist-Theil (Theil, 1967) index number formula PT emerged as being best. Finally, 
from the viewpoint of the economic approach to index number theory, the Walsh price index 
PW, the Fisher ideal index PF , and the Törnqvist-Theil index number formula PT were all 
regarded as being equally desirable. It also was shown that the same three index number 
formulas numerically approximate each other very closely, so it will not matter very much 
which of these alternative indexes is chosen.5 Hence, the theoretically ideal elementary index 
number formula is taken to be one of the three formulas PF(p0,p1,q0,q1), PW(p0,p1,q0,q1), or 
PT(p0,p1,q0,q1), where the period t quantity of commodity m, qm

t, is the total quantity of that 
narrowly defined commodity produced by the establishment during period t, and the 

                                                 
4See, for example, Szulc (1987, p. 13), Dalén (1992, p. 135) , Reinsdorf (1994), Diewert (1995a, pp. 20-21), 

Reinsdorf and Moulton (1997), and Balk (2002). 
5Theorem 5 in Diewert (1978, p. 888) showed that PF, PT, and PW will approximate each other to the second 

order around an equal price and quantity point; see Diewert (1978, p. 894), Hill (2000), and Chapter 20, Section 
B for some empirical results.   



 

 

corresponding price for commodity m is pm
t, the time aggregated unit value for t = 0,1, and 

for commodities m = 1,....,M.  

 
21.20 Various practical elementary price indices will be defined in the following sections. 
These indices do not have quantity weights and thus are functions only of the price vectors p0 
and p1, which contain time aggregated unit values for the M commodities in the elementary 
aggregate for periods 0 and 1. Thus, when a practical elementary index number formula, say 
PE(p0,p1), is compared with an ideal elementary price index, say the Fisher price index 
PF(p0,p1,q0,q1), then obviously PE will differ from PF because the prices are not weighted 
according to their economic importance in the practical elementary formula. Call this 
difference between the two index number formulas formula approximation error. 

21.21 Practical elementary indices are subject to two other types of error: 

(i)  The statistical agency may not be able to collect information on all M prices in the 
elementary aggregate; that is, only a sample of the M prices may be collected. Call 
the resulting divergence between the incomplete elementary aggregate and the 
theoretically ideal elementary index the sampling error. 

(ii)  Even if a price for a narrowly defined commodity is collected by the statistical 
agency, it may not be equal to the theoretically appropriate time aggregated unit value 
price. This use of an inappropriate price at the very lowest level of aggregation gives 
rise to time aggregation error. 

The role of unit values, as outlined above, is as a theoretical concept of price, for aggregating 
transaction prices of the same commodity from the same establishment over a specified time 
period. The unit values serve as basic data input on prices at the lowest level. They are the 
basic prices pi

t and have associated quantities qi
t that are the components of the price vectors 

p0 and p1 and the quantity vectors q0 and q1 for index number formulas. However, unit values 
are also used in XMPIs in a second respect; as unit value indices, that is, as a price index 
number formula, derived as a ratio of unit values in two time periods. As a price index, there 
is a particular functional form to the aggregator used whose properties require consideration. 
The formula for a unit value index is outlined, and evaluated, in terms of some principle 
axiomatic tests and a sampling approach, in section I below.  

21.22 In Section C, the five main elementary index number formulas are defined, and in 
Section D, various numerical relationships between these five indices are developed. 
Sections E and F develop the axiomatic and economic approaches to elementary indices, and 
the five main elementary formulas used in practice will be evaluated in light of these 
approaches. In Section G, a sampling framework for the collection of prices that can reduce 
the above three types of error will be discussed. 

C.   Elementary Indices Used in Practice 

21.23 Suppose that there are M lowest level commodities or specific commodities in a 
chosen elementary category. Denote the period t price of commodity m by pm

t for t = 0,1 and 



 

 

for commodities m = 1,2,...,M. Define the period t price vector as pt ≡ [p1
t,p2

t,...,pM
t] for t = 

0,1. 

 

21.24 The first widely used elementary index number formula is from the French 
economist Dutot (1738): 

(21.1) PD(p0,p1) ≡ ( ) ( )1 0

1 1

1 1M M

m m
m m

p p
M M= =

⎡ ⎤ ⎡ ⎤
  ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑  = ( ) ( )1 0

1 1

M M

m m
i i

p p
= =

⎡ ⎤ ⎡ ⎤
  ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑ . 

 
Thus the Dutot elementary price index is equal to the arithmetic average of the M period 1 
prices divided by the arithmetic average of the M period 0 prices. 
 
21.25 The second widely used elementary index number formula is from the Italian 
economist Carli (1764): 

(21.2) PC(p0,p1) ≡ 
1

0
1

1M
m

mm

p
pM=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . 

 
Thus the Carli elementary price index is equal to the arithmetic average of the M commodity 

price ratios or price relatives,
1

0
m

m

p
p .  

 
21.26 The third widely used elementary index number formula is from the English 
economist Jevons (1863): 

(21.3) PJ(p0,p1) ≡
1/1

0
1

MM
m

mm

p
p=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏ . 

 
Thus the Jevons elementary price index is equal to the geometric average of the M 

commodity price ratios or price relatives,
1

0
m

m

p
p .  

 
21.27 The fourth elementary index number formula PH is the harmonic average of the M 
commodity price relatives, and it was first suggested in passing as an index number formula 
by Jevons (1865, p. 121) and Coggeshall (1887): 

(21.4) PH(p0,p1) ≡
111

0
1

1M
m

mm

p
pM

−−

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∑ . 

 
21.28 Finally, the fifth elementary index number formula is the geometric average of the 
Carli and harmonic formulas; that is, it is the geometric mean of the arithmetic and harmonic 
means of the M price relatives:  



 

 

(21.5) PCSW(p0,p1) ≡ 0 1 0 1( , ) ( , )C HP p p P p p . 
 
This index number formula was first suggested by Fisher (1922, p. 472) as his formula 101. 
Fisher also observed that, empirically for his data set, PCSW was very close to the Jevons 
index PJ, and these two indices were his best unweighted index number formulas. In more 
recent times, Carruthers, Sellwood, and Ward (1980, p. 25) and Dalén (1992a, p. 140) also 
proposed PCSW as an elementary index number formula. 
 
21.29 Having defined the most commonly used elementary formulas, the question now 
arises: which formula is best? Obviously, this question cannot be answered until desirable 
properties for elementary indices are developed. This will be done in a systematic manner in 
Section E, but in the present section, one desirable property for an elementary index will be 
noted: the time reversal test, noted in Chapter 17. In the present context, this test for the 
elementary index P(p0,p1) becomes 

(21.6) P(p0,p1) P(p1,p0) = 1. 
 
21.30 This test says that if the prices in period 2 revert to the initial prices of period 0, then 
the product of the price change going from period 0 to 1, P(p0,p1), times the price change 
going from period 1 to 2, P(p1,p0), should equal unity; that is, under the stated conditions, the 
index should end up where it started. It can be verified that the Dutot; Jevons; and Carruthers, 
Sellwood, and Ward indices, PD, PJ , and PCSW, all satisfy the time reversal test, but the Carli 
and Harmonic indices, PC and PH, fail this test. In fact, these last two indices fail the test in 
the following biased manner: 

(21.7) PC(p0,p1) PC(p1,p0) ≥ 1 , 
(21.8) PH(p0,p1) PH(p1,p0) ≤ 1, 
 
with strict inequalities holding in (21.7) and (21.8), provided that the period 1 price vector p1 
is not proportional to the period 0 price vector p0.6 Thus the Carli index will generally have 
an upward bias while the Harmonic index will generally have a downward bias. Fisher (1922, 
pp. 66 and 383) seems to have been the first to establish the upward bias of the Carli index7 , 
and he made the following observations on its use by statistical agencies: 
 

In fields other than index numbers it is often the best form of average to use. But we shall see that the 
simple arithmetic average produces one of the very worst of index numbers. And if this book has no 
other effect than to lead to the total abandonment of the simple arithmetic type of index number, it will 
have served a useful purpose (Irving Fisher, 1922, pp. 29–30). 

21.31 In the following section, some numerical relationships between the five elementary 
indices defined in this section will be established. Then, in the subsequent section, a more 
                                                 

6These inequalities follow from the fact that a harmonic mean of M positive numbers is always equal to or less 
than the corresponding arithmetic mean; see Walsh (1901, p. 517) or Fisher (1922, pp. 383–84). This inequality 
is a special case of Schlömilch’s Inequality; see Hardy, Littlewood, and Polya (1934, p. 26). 

7See also Pigou (1924, pp. 59 and 70), Szulc (1987, p. 12), and Dalén (1992a, p. 139). Dalén (1994, pp. 150–
51) provides some nice intuitive explanations for the upward bias of the Carli index. 



 

 

comprehensive list of desirable properties for elementary indices will be developed, and the 
five elementary formulas will be evaluated in the light of these properties or tests. 

D.   Numerical Relationships between the Frequently Used 
Elementary Indices 
 
21.32 It can be shown8 that the Carli, Jevons, and Harmonic elementary price indices 
satisfy the following inequalities: 

(21.9) PH(p0,p1) ≤ PJ(p0,p1) ≤ PC(p0,p1); 
 
that is, the Harmonic index is always equal to or less than the Jevons index, which in turn is 
always equal to or less than the Carli index. In fact, the strict inequalities in formula (21.9) 
will hold, provided that the period 0 vector of prices, p0, is not proportional to the period 1 
vector of prices, p1. 
 
21.33 The inequalities in formula (21.9) do not tell us by how much the Carli index will 
exceed the Jevons index and by how much the Jevons index will exceed the Harmonic index. 
Hence, in the remainder of this section, some approximate relationships among the five 
indices defined in the previous section will be developed which will provide some practical 
guidance on the relative magnitudes of each of the indices. 

21.34 The first approximate relationship derived is between the Carli index PC and the 
Dutot index PD. For each period t, define the arithmetic mean of the M prices pertaining to 
that period as follows: 

(21.10) pt* ≡ ( )
1

1M
t
m

m
p

M=
∑ ; t = 0,1.  

 
Now define the multiplicative deviation of the mth price in period t relative to the mean price 
in that period, t

me , as follows: 
 
(21.11) pm

t = pt*(1+ t
me );  m = 1,...,M ; t = 0,1. 

 
Note that formula (21.10) and formula (21.11) imply that the deviations em

t sum to zero in 
each period; that is, 
 

(21.12) ( )
1

1M
t
m

m

e
M=

∑ = 0 ; t = 0,1. 

 

Note that the Dutot index can be written as the ratio of the mean prices,
1*

0*
p

p ; that is,  

                                                 
8Each of the three indices PH, PJ, and PC  is a mean of order r where r equals −1, 0, and 1, respectively, and so 

the inequalities follow from Schlömilch’s inequality; see Hardy, Littlewood, and Polyà (1934, p. 26). 



 

 

 

(21.13) PD(p0,p1) =
1*

0*
p

p . 

 
Now substitute formula (21.11) into the definition of the Jevons index, formula (21.3): 
 

(21.14) PJ(p0,p1) = ( )
( )

1
1* 1

0* 0
1

1
1

MM
m

m m

p e
p e=

⎡ ⎤+
⎢ ⎥+⎢ ⎥⎣ ⎦

∏  

= ( )
( )

1
11*

0* 0
1

1
1

MM
m

m m

ep
p e=

⎡ ⎤+⎛ ⎞
⎢ ⎥⎜ ⎟ +⎝ ⎠ ⎢ ⎥⎣ ⎦

∏  

= PD(p0,p1) f(e0,e1), using formula (21.13) 
 
where et ≡ [e1

t,..., t
me ] for t = 0 and 1 and the function f is defined as follows: 

 

(21.15) f(e0,e1) ≡ ( )
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Expand f(e0,e1) by a second-order Taylor series approximation around e0 = 0M and e1 = 0M. 
Using formula (21.12), it can be verified9 that the following second order approximate 
relationship between PJ and PD results: 
 
(21.16) PJ(p0,p1) ≈ PD(p0,p1) 0 0 1 11 11  ( )  ( )2 2M e e M e e⎡ ⎤+ −⎣ ⎦   

= PD(p0,p1) ( ) ( )0 11 11  ( ) var  ( ) var2 2e e⎡ ⎤+ −⎣ ⎦  

 
where var(et) is the variance of the period t multiplicative deviations; that is, for t = 0,1: 
 

(21.17) var(et) ≡ ( ) ( )
2

*

1

1
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t t
m

m

e eM
=

−∑  

       = ( ) ( )
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1

1
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t
m

m

eM
=

∑  since et* = 0 using (12) 

       = ( )1 t te eM  . 

 
21.35 Under normal conditions,10 the variance of the deviations of the prices from their 
means in each period is likely to be approximately constant, and so under these conditions, 
the Jevons price index will approximate the Dutot price index to the second order. With the 

                                                 
9This approximate relationship was first obtained by Carruthers, Sellwood, and Ward (1980, p. 25). 
10If there are significant changes in the overall inflation rate, some studies indicate that the variance of 

deviations of prices from their means also can change. Also, if M is small, there will be sampling fluctuations in 
the variances of the prices from period to period. 



 

 

exception of the Dutot formula, the remaining four elementary indices defined in Section C 
are functions of the relative prices of the M commodities being aggregated. This fact is used 
to derive some approximate relationships between these four elementary indices. Thus define 
the mth price relative as  

(21.18) rm ≡ 
1

0
m

m

p
p  ; m = 1,...,M. 

 
Define the arithmetic mean of the m price relatives as 

(21.19) r* ≡ ( ) ( )
1

1
M

m
m

rM
=

∑  = PC(p0,p1), 

 
where the last equality follows from the definition of formula (21.2) of the Carli index. 
Finally, define the deviation em of the mth price relative rm  from the arithmetic average of 
the M price relatives r* as follows: 
 
(21.20) rm = r*(1 + em) ; m = 1,...,M.  
 
21.36 Note that formula (21.19) and formula 20.20) imply that the deviations em sum to 
zero; that is, : 

(21.21) ( )
1

M

m
m

e
=

∑ = 0. 

 
Now substitute formula (21.20) into the definitions of PC, PJ, PH, and PCSW, formulas (21.2) 
to (21.5), to obtain the following representations for these indices in terms of the vector of 
deviations, e ≡ [e1,...,eM]: 
 

(21.22) PC(p0,p1) = ( )
1

1 ( )
M

m
m

rM
=

∑  = r* 1 ≡ r*fC(e) ; 
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(21.24) PH(p0,p1) = ( )( )
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(21.25) PCSW(p0,p1) = 0 1 0 1( , ) ( , )C HP p p P p pi = r* ( ) ( )C Hf e f ei  ≡ r*fCSW(e), 
 
where the last equation in (21.22) to (21.25) serves to define the deviation functions, fC(e), 
fJ(e), fH(e), and fCSW(e). The second-order Taylor series approximations to each of these 
functions around the point e = 0M are 
 
(21.26) fC(e) =≈ 1; 
(21.27) fJ(e) ≈ 1 − ( 1

2 M)e⋅e = 1 − ( 1
2 )var(e) ; 



 

 

(21.28) fH(e) ≈ 1 − ( 1
M )e⋅e = 1 − var(e) ; 

(21.29) fCSW(e) ≈ 1 − ( 1
2 M)e⋅e = 1 − ( 1

2 )var(e);  
 
where repeated use is made of formula (21.21) in deriving the above approximations.11 Thus 
to the second order, the Carli index PC will exceed the Jevons and Carruthers, Sellwood, and 
Ward indices, PJ and PCSW, by ( 1

2 )r*var(e), which is one-half of the variance of the M price 
relatives pm

1/pm
0. Much like the second order, the Harmonic index PH will lie below the 

Jevons and Carruthers, Sellwood, and Ward indices, PJ and PCSW, by one-half of the variance 

of the M price relatives
1

0
m

m

p
p .  

 
21.37 Thus empirically, it is expected that the Jevons and Carruthers, Sellwood, and Ward 
indices will be very close to each other. Using the previous approximation result formula 
(21.16), it is expected that the Dutot index PD also will be fairly close to PJ and PCSW, with 
some fluctuations over time because of changing variances of the period 0 and 1 deviation 
vectors e0 and e1. Thus, it is expected that these three elementary indices will give similar 
numerical answers in empirical applications. On the other hand, the Carli index can be 
expected to be substantially above these three indices, with the degree of divergence growing 
as the variance of the M price relatives grows. Similarly, the Harmonic index can be expected 
to be substantially below the three middle indices, with the degree of divergence growing as 
the variance of the M price relatives grows.  

E.   The Axiomatic Approach to Elementary Indices 

21.38 Recall that in Chapter 17, the axiomatic approach to bilateral price indices, 
P(p0,p1,q0,q1), was developed. In the present chapter, the elementary price index P(p0,p1) 
depends only on the period 0 and 1 price vectors, p0 and p1 , not on the period 0 and 1 
quantity vectors, q0 and q1. One approach to obtaining new tests (T) or axioms for an 
elementary index is to look at the 20 or so axioms listed in Chapter 17 for bilateral price 
indices P(p0,p1,q0,q1), and adapt those axioms to the present context; that is, use the old 
bilateral tests for P(p0,p1,q0,q1) that do not depend on the quantity vectors q0 and q1 as tests 
for an elementary index P(p0,p1).12  

21.39 The first eight tests or axioms are reasonably straightforward and uncontroversial: 

T1: Continuity: P(p0,p1) is a continuous function of the M positive period 0 prices p0 ≡ 
[p1

0,...,pM
0] and the M positive period 1 prices p1 ≡ [p1

1,...,pM
1]. 

 

                                                 
11These second-order approximations are from Dalén (1992, p. 143) for the case r* = 1 and to Diewert (1995a, 

p. 29) for the case of a general r*. 
12This was the approach used by Diewert (1995a, pp. 5–17), who drew on the earlier work of Eichhorn (1978, 

pp. 152–60) and Dalén (1992). 



 

 

T2: Identity: P(p,p) = 1; that is, if the period 0 price vector equals the period 1 price vector, 
then the index is equal to unity. 
 
T3: Monotonicity in Current Period Prices: P(p0,p1) < P(p0,p) if p1 < p; that is, if any period 
1 price increases, then the price index increases. 
 
T4: Monotonicity in Base Period Prices: P(p0,p1) > P(p,p1) if p0 < p; that is, if any period 0 
price increases, then the price index decreases. 
 
T5: Proportionality in Current Period Prices: P(p0,λp1) = λP(p0,p1) if λ > 0; i.e., if all period 
1 prices are multiplied by the positive number λ, then the initial price index is also multiplied 
by λ. 
 
T6: Inverse Proportionality in Base Period Prices: P(λp0,p1) = λ−1 P(p0,p1) if λ > 0;that is, if 
all period 0 prices are multiplied by the positive number λ, then the initial price index is 
multiplied by 1/λ. 
 

T7: Mean Value Test: minm {
1

0
m

m

p
p  : m = 1,...,M} ≤ P(p0,p1) ≤ maxm {

1

0
m

m

p
p  : m = 1,...,M}; 

that is, the price index lies between the smallest and largest price relatives. 
 
T8: Symmetric Treatment of Establishments/Commodities: P(p0,p1) = P(p0*,p1*), where p0* 
and p1* denote the same permutation of the components of p0 and p1; that is, if there is a 
change in ordering of the establishments from which the price quotations (or commodities 
within establishments) are obtained for the two periods, then the elementary index remains 
unchanged. 
 
21.40 Eichhorn (1978, p. 155) showed that tests T1, T2, T3, and T5 imply T7, so that not 
all of the above tests are logically independent. The following tests are more controversial 
and are not necessarily accepted by all price statisticians. 

T9: The Price Bouncing Test: P(p0,p1) = P(p0*,p1**) where p0* and p1** denote possibly 
different permutations of the components of p0 and p1; that is, if the ordering of the price 
quotes for both periods is changed in possibly different ways, then the elementary index 
remains unchanged. 
 
21.41 Obviously, test T8 is a special case of test T9 where in test T8 the two permutations 
of the initial ordering of the prices are restricted to be the same. Thus test T9 implies test T8. 
Test T9 is due to Dalén (1992a, p. 138) who justified this test by suggesting that the price 
index should remain unchanged if outlet (for CPIs) prices “bounce” in such a manner that the 
outlets are just exchanging prices with each other over the two periods. While this test has 
some intuitive appeal, it is not consistent with the idea that outlet prices should be matched to 
each other in a one-to-one manner across the two periods. If elementary aggregates contain 
thousands of individual commodities that differ not only by outlet, there still is less reason to 
maintain this test. 



 

 

21.42 The following test was also proposed by Dalén (1992a) in the elementary index 
context: 

T10: Time Reversal: P(p1,p0) = 0 11 ( , )P p p ; that is, if the data for periods 0 and 1 are 
interchanged, then the resulting price index should equal the reciprocal of the original price 
index. 
 
21.43 Since many price statisticians approve of the Laspeyres price index in the bilateral 
index context, and this index does not satisfy the time reversal test, it is obvious that not all 
price statisticians would regard the time reversal test in the elementary index context as being 
a fundamental test that must be satisfied. Nevertheless, many other price statisticians do 
regard this test as fundamental, since it is difficult to accept an index that gives a different 
answer if the ordering of time is reversed. 

T11: Circularity: P(p0,p1)P(p1,p2) = P(p0,p2); that is, the price index going from period 0 to 1, 
times the price index going from period 1 to 2, equals the price index going from period 0 to 
2 directly. 
 
21.44 The circularity and identity tests imply the time reversal test (just set p2 = p0). Thus, 
the circularity test is essentially a strengthening of the time reversal test, so price statisticians 
who did not accept the time reversal test are unlikely to accept the circularity test. However, 
if there are no obvious drawbacks to accepting the circularity test, it would seem to be a very 
desirable property: it is a generalization of a property that holds for a single price relative. 

T12: Commensurability: P(λ1p1
0,..., λMpM

0; λ1p1
1,..., λMpM

1) = P(p1
0,...,pM

0; p1
1,...,pM

1) = 
P(p0,p1) for all λ1 > 0, ... , λM > 0;that is., if the units of measurement for each commodity in 
each establishment are changed, then the elementary index remains unchanged. 
 
21.45 In the bilateral index context, virtually every price statistician accepts the validity of 
this test. However, in the elementary context, this test is more controversial. If the M 
commodities in the elementary aggregate are homogeneous, then it makes sense to measure 
all of the commodities in the same units. The very essence of homogeneity is that quantities 
can be added up in an economically meaningful way. Hence, if the unit of measurement is 
changed, then test T12 should restrict all of the λm to be the same number (say λ) and the test 
T12 becomes  

(21.30) P(λp0,λp1) = P(p0,p1); λ > 0. 
 
This modified test T12 will be satisfied if tests T5 and T6 are satisfied. Thus, if the 
commodities in the elementary aggregate are very homogeneous, then there is no need for 
test T12. 
 
21.46 However, in actual practice, there usually will be thousands of individual 
commodities in each elementary aggregate, and the hypothesis of commodity homogeneity is 
not warranted. Under these circumstances, it is important that the elementary index satisfy 
the commensurability test, since the units of measurement of the heterogeneous commodities 



 

 

in the elementary aggregate are arbitrary and hence the price statistician can change the 
index simply by changing the units of measurement for some of the commodities. 

21.47 This completes the listing of the tests for an elementary index. There remains the 
task of evaluating how many tests each of the five elementary indices defined in section C 
passed. 

21.48 The Jevons elementary index, PJ , satisfies all of the tests, and hence emerges as 
being best from the viewpoint of the axiomatic approach to elementary indices. 

21.49 The Dutot index, PD , satisfies all of the tests with the important exception of the 
Commensurability Test T12, which it fails. Heterogeneous commodities in the elementary 
aggregate constitute a rather serious failure, and price statisticians should be careful in using 
this index under these conditions. 

21.50 The geometric mean of the Carli and Harmonic elementary indices, PCSW, fails only 
the price bouncing test T9 and the circularity test T11. The failure of these two tests is 
probably not a fatal failure, so this index could be used by price statisticians if, for some 
reason, they decided not to use the Jevons formula. It particularly would be suited to those 
who favor the test approach for guidance in choosing an index formula. As observed in 
Section D, numerically, PCSW will be very close to PJ.  

21.51 The Carli and Harmonic elementary indices, PC and PH, fail the price bouncing test 
T9, the time reversal test T10, and the circularity test T11 and pass the other tests. The failure 
of tests T9 and T11 is not a fatal failure, but the failure of the time reversal test T10 is rather 
serious, so price statisticians should be cautious in using these indices. 

F.   The Economic Approach to Elementary Indices 

21.52 Recall the notation and discussion in Section B. First, it is necessary to recall some 
of the basics of the economic approach from Chapter 18. This allowed the aggregator 
functions representing the producing technology and the behavioral assumptions of the 
economic agents implicit in different formulas to be identified. The more realistic these were, 
the more support was given to the corresponding index number formula. The economic 
approach helps identify what the target index should be. 

21.53 Consider the economic theory relating to an XPI. Suppose that each establishment 
producing commodities in the elementary aggregate, for export only, has a set of inputs, and 
the linearly homogeneous aggregator function f(q) describes what output vector q ≡ [q1,...,qM] 
can be produced from the inputs. Further assume that each establishment engages in revenue-
maximizing behavior in each period. Then, as was seen in Chapter 18, it can be shown that 
that certain specific functional forms for the aggregator f(q) or its dual unit revenue function 
R(p)13 lead to specific functional forms for the price index, P(p0,p1,q0,q1), with  

                                                 
13The unit revenue function is defined as R(p) ≡ max q {p⋅q : f(q) = 1}. 



 

 

(21.31) P(p0,p1,q0,q1) =
1

0
( )

( )
R p

R p . 

 
21.54 Suppose that the establishments have aggregator functions f defined as follows14: 

(21.32) f(q1,...,qM) ≡ maxm {qm/αm : m = 1,...,M}, 
 
where the αm are positive constants. Then under these assumptions, it can be shown that 
Equation (21.31) becomes15 
 

(21.33) 
1

0
( )

( )
R p

R p = 
1 0

0 0
p q

p q  = 
1 1

0 1
p q

p q , 

 
and the quantity vector of commodities produced during the two periods must be 
proportional; that is,  
 
(21.34) q1 = λq0 for some λ > 0. 
 
21.55 From the first equation in formula (21.33), it can be seen that the true output price 
index, R(p1) /R(p0), under assumptions of formula (21.32) about the aggregator function f, is 
equal to the Laspeyres price index, PL(p0,p1,q0,q1) ≡ p1⋅q0 / p0⋅q0. The Paasche formula 
PP(p0,p1,q0,q1) ≡ p1q1/p0q1 is equally justified under formula (21.34).  

21.56 Formula (21.32) on f thus justifies the Laspeyres and Paasche indices as being the 
“true” elementary aggregate from the economic approach to elementary indices. Yet this is a 
restrictive assumption, at least from an economic viewpoint, that relative quantities produced 
do not vary with relative prices. Other less restrictive assumptions on technology can be 
made. For example, as shown in Section B.3, Chapter 18, certain assumptions on technology 
justify the Törnqvist price index, PT , whose logarithm is defined as  

(21.35)  ln PT(p0,p1,q0,q1) ≡ ( )0 1 1

0
1
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2

M
i i i

i i

s s p
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∑ . 

 
21.57 Suppose now that commodity revenues are proportional for each commodity over the 
two periods so that 

 
(21.36) pm

1qm
1 = λ pm

0qm
0 for m = 1,...,M and for some λ > 0. 

 
Under these conditions, the base period revenue shares sm

0 will equal the corresponding 
period 1 revenue shares sm

1 , as well as the corresponding β(m); that is, formula (21.36) 
implies 

                                                 
14The preferences that correspond to this f are known as Leontief (1936) or no substitution preferences. 
15See Pollak (1983). 



 

 

 
(21.37) sm

0 = sm
1 ≡ β(m) ; m = 1,...,M. 

 
Under these conditions, the Törnqvist index reduces to the following weighted Jevons index:   
 

(21.38)  PJ(p0,p1,β(1),…,β(M))  =
( )1

0
1

mM
m

mm

p
p

β

=
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∏ .  

 
21.58 Thus, if the relative prices of commodities in a Jevons index are weighted using 
weights proportional to base (which equals current) period revenue shares in the commodity 
class, then the Jevons index defined by formula (38) is equal to the following approximation 
to the Törnqvist index:  

(21.39)  PJ(p0,p1,s0) ≡
0

1

0
1

msM
m

mm

p
p=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏ . 

 
Of course at the elementary aggregate level there is no information quantities and revenues, 
but at least there is an understanding of the assumptions required for the Jevons index to 
approximate the Törnqvist index. 
 
21.59 In Section G, the sampling approach show how, under various sample designs, 
elementary index number formulas have implicit weighting systems. Of particular interest are 
sample designs where commodities are sampled with probabilities proportionate to quantity 
or revenue shares in either period. Under such circumstances, quantity weights are implicitly 
introduced, so that the sample elementary index is an estimate of a population weighted 
index. The economic approach then provides a basis for deciding whether the economic 
assumptions underlying the resulting population estimates are reasonable. For example, the 
above results show that the sample Jevons elementary index can be justified as an 
approximation to an underlying Törnqvist price index for a homogeneous elementary 
aggregate under a price sampling scheme with probabilities of selection proportionate to 
base (which equals current) period revenue shares. 

21.60 Two assumptions have been outlined here: the assumption that the quantity vectors 
pertaining to the two periods under consideration are proportional formula (21.34) and the 
assumption that revenues are proportional over the two periods formula (21.36).  

21.61 The choice between formulas depends not only on the sample design used, but also 
on the relative merits of the proportional quantities versus proportional revenues assumption. 
These considerations apply to all index number formula for it is assumed that underlying 
each formula are not prices and quantities that are independent of each other, but prices and 
quantities that are interdependent. The economic theory of MPIs (from a resident producer’s 
perspective), CPIs or intermediate input PPIs, are similar insofar as the aggregator function 
describes the preferences of a cost-minimizing purchaser. Cost-minimizing purchasers will 
purchase fewer sampled commodities with above-average price increases; the quantities can 
be expected to fall rather than remain constant. Such a decrease in quantities combined with 
the increase in price makes the assumption of constant expenditures more tenable. In this 



 

 

context, index number theorists have debated the relative merits of the proportional quantities 
versus proportional expenditures assumption for a long time. Authors who thought that the 
proportional expenditures assumption was more likely empirically include Jevons (1865, p. 
295) and Ferger (1931, p. 39; 1936, p. 271). These early authors did not have the economic 
approach to index number theory at their disposal, but they intuitively understood, along with 
Pierson (1895, p. 332), that substitution effects occurred and, hence, the proportional 
expenditures assumption was more plausible than the proportional quantities assumption. 
However, this is for the economic theory of agents who act as purchasers. In Chapter 18 the 
economic theory of XPIs, as is the case with output PPIs, argued that revenue-maximizing 
establishments will produce more sampled commodities with above-average price increases 
making assumptions of constant revenues less tenable. However, the theory presented in 
Chapter 18 also indicated that technical progress was a complicating factor largely absent in 
the consumer context.  

21.62 If quantities supplied move proportionally over time, then this is consistent with a 
Leontief technology, and the use of a Laspeyres index is perfectly consistent with the 
economic approach to the output price index. On the other hand, if the probabilities used for 
sampling of prices for the Jevons index are taken to be the arithmetic average of the period 0 
and 1 commodity revenue shares, and narrowly defined unit values are used as the price 
concept, then the weighted Jevons index becomes an ideal type of elementary index 
discussed in Section B. In general, the biases introduced by the use of an unweighted formula 
cannot be assessed accurately unless information on weights for the two periods is somehow 
obtained. 

G.   Sampling Approach to Elementary Indices 

It can now be shown how various elementary formulas can estimate the Laspeyres formula 
under alternative assumptions about the sampling of prices. 

21.63 To justify the use of the Dutot elementary formula, consider the expected value of 
the Dutot index when sampling with base period commodity inclusion probabilities equal to 
the sales quantities of commodity m in the base period relative to total sales quantities of all 
commodities in the commodity class in the base period. Assume that these definitions require 
that all commodities in the commodity class have the same units.16 The discussion is in terms 
of commodities sold to the export market, but can be applied to purchases of imported 
commodities. 

21.64 The expected value of the sample Dutot index is17 

                                                 
16The inclusion probabilities are meaningless unless the products are homogeneous. 
17There is a technical bias since E(x/y) is approximated by E(x)/E(y), but this will approach zero as m gets 

larger. 
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which is the familiar Laspeyres index, 
 

(21.41) 
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≡ PL(p0,p1,q0,q1).  

 
21.65 Now it is easy to see how this sample design could be turned into a rigorous 
sampling framework for sampling prices in the particular commodity class under 
consideration. If commodity prices in the commodity class were sampled proportionally to 
their base period probabilities, then the Laspeyres index formula (21.41) could be estimated 
by a probability weighted Dutot index where the probabilities are defined by their base 
period quantity shares. In general, with an appropriate sampling scheme, the use of the Dutot 
formula at the elementary level of aggregation for homogeneous commodities can be 
perfectly consistent with a Laspeyres index concept. Put otherwise, under this sampling 
design, the expectation of the sample Dutot is equal to the population Laspeyres.  

21.66 The Dutot formula also can be consistent with a Paasche index concept at the 
elementary level of aggregation. If sampling is with period 1 item inclusion probabilities, the 
expectation of the sample Dutot is equal to  

(21.42) 
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which is the familiar Paasche formula, 
 

(21.43) 
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21.67 Put otherwise, under this sampling design, the expectation of the sample Dutot is 
equal to the population Paasche index. Again, it is easy to see how this sample design could 
be turned into a rigorous sampling framework for sampling prices in the particular 
commodity class under consideration. If commodity prices in the commodity class were 
sampled proportionally to their period 1 probabilities, then the Paasche index formula (21.43) 
could be estimated by the probability weighted Dutot index. In general, with an appropriate 
sampling scheme, the use of the Dutot formula at the elementary level of aggregation (for a 



 

 

homogeneous elementary aggregate) can be perfectly consistent with a Paasche index 
concept.18 

21.68 Rather than use the fixed basket representations for the Laspeyres and Paasche 
indexes, the revenue share representations for the Laspeyres and Paasche indexes could be 
used along with the revenue shares sm

0 or sm
1 as probability weights for price relatives. Under 

sampling proportional to base period revenue shares, the expectation of the Carli index is  

(21.44) PC(p0,p1,s0) ≡ 
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which is the population Laspeyres index. Of course, formula (21.44) does not require the 
assumption of homogeneous commodities as did formula (21.40) and formula (21.42) above. 
On the other hand, one can show analogously that under sampling proportional to period 1 
revenue shares, the expectation of the reciprocal of the sample Harmonic index is equal to the 
reciprocal of the population Paasche index, and thus that the expectation of the sample 
Harmonic index,  
 

(21.45) PH(p0,p1,s1) ≡ 
111

1
0

1

M
m

m
mm

ps p

−−

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∑ , 

 
will be equal to the Paasche index. 
 
21.69 The above results show that the sample Dutot elementary index can be justified as an 
approximation to an underlying population Laspeyres or Paasche price index for a 
homogeneous elementary aggregate under appropriate price sampling schemes. The above 
results also show that the sample Carli and Harmonic elementary indexes can be justified as 
approximations to an underlying population Laspeyres or Paasche price index for a 
heterogeneous elementary aggregate under appropriate price sampling schemes. 

21.70 Thus if the relative prices of commodities in the commodity class under 
consideration are sampled using weights that are proportional to the arithmetic average of the 
base and current period revenue shares in the commodity class, then the expectation of the 
sample Jevons index is equal to the population Törnqvist index formula (21.35).  

21.71 Sample elementary indices sampled under appropriate probability designs were 
capable of approximating various population economic elementary indices, with the 
approximation becoming exact as the sampling approached complete coverage. Conversely, 
it can be seen that, in general, it will be impossible for a sample elementary price index, of 
the type defined in Section C, to provide an unbiased estimate of the theoretically population 
ideal elementary price index defined in Section B, even if all commodity prices in the 
elementary aggregate were sampled. Hence, rather than just sampling prices, it will be 

                                                 
18Of course, the Dutot index as an estimate of a population Paasche index will differ from the Dutot index as 

an estimate of a population Laspeyres index because of  representativity or substitution bias. 



 

 

necessary for the price statistician to collect information on the transaction values (or 
quantities) associated with the sampled prices to form sample elementary aggregates that will 
approach the target ideal elementary aggregate as the sample size becomes large. Thus 
instead of just collecting a sample of prices, it will be necessary to collect corresponding 
sample quantities (or values) so that a sample Fisher, Törnqvist, or Walsh price index can be 
constructed. This sample-based superlative elementary price index will approach the 
population ideal elementary index as the sample size becomes large. This approach to the 
construction of elementary indices in a sampling context was recommended by Pigou (1924, 
pp. 66–7), Fisher (1922, p. 380), Diewert (1995a, p. 25), and Balk (2005).19 In particular, 
Pigou (1924, p. 67) suggested that the sample-based Fisher ideal price index be used to 
deflate the value ratio for the aggregate under consideration to obtain an estimate of the 
quantity ratio for the aggregate under consideration. 

21.72 Until fairly recently, it was not possible to determine how close an unweighted 
elementary index, defined in Section C, was to an ideal elementary aggregate. However, with 
the availability of electronic transaction data (that is, of detailed data on the prices and 
quantities of individual products that are sold in retail outlets), it has been possible to 
compute ideal elementary aggregates for some product strata and compare the results with 
statistical agency estimates of price change for the same class of products. Of course, the 
statistical agency estimates of price change usually are based on the use of the Dutot, Jevons, 
or Carli formulas. These studies relate to CPIs, the data collected from the bar-code readers 
of retail outlets. But the concern here is with the discrepancy between unweighted and 
weighted indices used at this elementary aggregate level, and the discrepancies are 
sufficiently large to merit highlighting in the context of trade price indices. The following 
quotations summarize many of these scanner data studies: 

“A second major recent development is the willingness of statistical agencies to experiment with 
scanner data, which are the electronic data generated at the point of sale by the retail outlet and 
generally include transactions prices, quantities, location, date and time of purchase and the product 
described by brand, make or model. Such detailed data may prove especially useful for constructing 
better indexes at the elementary level. Recent studies that use scanner data in this way include Silver 
(1995), Reinsdorf (1996), Bradley, Cook, Leaver and Moulton (1997), Dalén (1997), de Haan and 
Opperdoes (1997) and Hawkes (1997). Some estimates of elementary index bias (on an annual basis) 
that emerged from these studies were: 1.1 percentage points for television sets in the United Kingdom; 
4.5 percentage points for coffee in the United States; 1.5 percentage points for ketchup, toilet tissue, 
milk and tuna in the United States; 1 percentage point for fats, detergents, breakfast cereals and frozen 
fish in Sweden; 1 percentage point for coffee in the Netherlands and 3 percentage points for coffee in 
the United States respectively. These bias estimates incorporate both elementary and outlet substitution 
biases and are significantly higher than our earlier ballpark estimates of .255 and .41 percentage points. 
On the other hand, it is unclear to what extent these large bias estimates can be generalized to other 
commodities (Diewert,1998a, pp. 54–55).  

Before considering the results it is worth commenting on some general findings from scanner data. It is 
stressed that the results here are for an experiment in which the same data were used to compare 
different methods. The results for the U.K. Retail Prices Index can not be fairly compared since they 

                                                 
19Balk (2005) provides the details for this sampling framework. [Bert M. Balk, 2005, Price Indexes for 
Elementary Aggregates: The Sampling Approach, Journal of Official Statistics, Vol. 21, No. 4, pp. 675–699.] 
 

 



 

 

are based on quite different practices and data, their data being collected by price collectors and having 
strengths as well as weaknesses (Fenwick, Ball, Silver and Morgan (2002)). Yet it is worth following 
up on Diewert’s (2002c) comment on the U.K. Retail Prices Index electrical appliances section, which 
includes a wide variety of appliances, such as irons, toasters, refrigerators, etc. which went from 98.6 
to 98.0, a drop of 0.6 percentage points from January 1998 to December 1998. He compares these 
results with those for washing machines and notes that “..it may be that the non washing machine 
components of the electrical appliances index increased in price enough over this period to cancel out 
the large apparent drop in the price of washing machines but I think that this is somewhat unlikely.” A 
number of studies on similar such products have been conducted using scanner data for this period. 
Chained Fishers indices have been calculated from the scanner data, (the RPI (within year) indices are 
fixed base Laspeyres ones), and have been found to fall by about 12% for televisions (Silver and 
Heravi, 2001a), 10% for washing machines (Table 7 below), 7.5% for dishwashers, 15% for cameras 
and 5% for vacuum cleaners (Silver and Heravi, 2001b). These results are quite different from those 
for the RPI section and suggest that the washing machine disparity, as Diewert notes, may not be an 
anomaly. Traditional methods and data sources seem to be giving much higher rates for the CPI than 
those from scanner data, though the reasons for these discrepancies were not the subject of this study. 
(Silver and Heravi, 2002, p. 25).  

21.73 These quotations summarize the results of many elementary aggregate index number 
studies based on the use of scanner data. These studies indicate that when detailed price and 
quantity data are used to compute superlative indexes or hedonic indexes for an expenditure 
category, the resulting measures of price change are often below the corresponding official 
statistical agency estimates of price change for that category. Sometimes the measures of 
price change based on the use of scanner data are considerably below the corresponding 
official measures.20 These results indicate that there may be large gains in the precision of 
elementary indices if a weighted sampling framework is adopted. 

21.74 Is there a simple intuitive explanation for the above empirical results? The empirical 
work is on CPIs, and the behavioral assumptions relate to such indices, though they equally 
apply to MPIs. Furthermore, the analysis can be undertaken readily based on the behavioral 
assumptions underlying XPIs, its principles being more important. A partial explanation may 
be possible by looking at the dynamics of product demand. In any market economy, firms 
and outlets sell products that are either declining or increasing in price. Usually, the products 
that decline in price experience an increase in sales. Thus, the expenditure shares associated 
with products declining in price usually increase, and the reverse is true for products 
increasing in price. Unfortunately, elementary indices cannot pick up the effects of this 
negative correlation between price changes and the induced changes in expenditure shares, 
because elementary indices depend only on prices and not on expenditure shares. 

21.75 An example can illustrate this point. Suppose, that for an MPI, there are only three 
commodities in the elementary aggregate, and that in period 0, the price of each commodity 
is pm

0 = 1, and the expenditure share for each commodity is equal, so that sm
0 = 1/3 for m = 

1,2,3. Suppose that in period 1, the price of commodity 1 increases to p1
1 = 1 + i, the price of 

commodity 2 remains constant at p2
1 = 1 , and the price of commodity 3 decreases to p3

1 = (1 
                                                 

20However, scanner data studies do not always show large potential biases in official CPIs. Masato Okamoto 
of the National Statistics Center in Japan informed us that a large-scale internal study was undertaken. Using 
scanner data for about 250 categories of processed food and daily necessities collected over the period 1997 to 
2000, it was found that the indices based on scanner data averaged only about 0.2 percentage points below the 
corresponding official indices per year. Japan uses the Dutot formula at the elementary level in its official CPI. 



 

 

+ i)−1 , where the commodity 1 rate of increase in price is i > 0. Suppose further that the 
expenditure share of commodity 1 decreases to s1

1 = (1/3) − σ where σ is a small number 
between 0 and 1/3, and the expenditure share of commodity 3 increases to s3

1 = (1/3) + σ. 
The expenditure share of commodity 2 remains constant at s2

1 = 1/3. The five elementary 
indices, defined in Section C, all can be written as functions of the commodity 1 inflation rate 
i (which is also the commodity 3 deflation rate) as follows: 

(21.46) PJ(p0,p1) = ( )( )
1

1 31 1i i −⎡ ⎤+ +⎣ ⎦  = 1 ≡ fJ(i) ; 

(21.47) PC(p0,p1) = ( ) ( ) 11 1 11 13 3 3i i −+ + + +  ≡ fC(i) ; 

(21.48) PH(p0,p1) = ( ) ( )1 11 1 11 13 3 3i i− −+ + + +   ≡ fH(i) ; 

(21.49) PCSW(p0,p1) = 0 1 0 1( , ) ( , )C HP p p P p p  ≡ fCSW(i) ; 
(21.50) PD(p0,p1) = ( ) ( ) 11 1 11 13 3 3i i −+ + + +   ≡ fD(i) . 
 
21.76 Note that in this particular example, the Dutot index fD(i) turns out to equal the Carli 
index fC(i). The second-order Taylor series approximations to the five elementary indices 
formulas (21.46) to (21.50) are given by formulas (21.51) to ( 20.55) below: 

(21.51) fJ(i) = 1 ; 

(21.52) fC(i) ≈ 211
3

i+  ; 

(21.53) fH(i) ≈ 211
3

i−  ; 

(21.54) fCSW(i) ≈ 1 ; 
(21.55) fD(i) ≈ 211

3
i+  . 

 
Thus for small i, the Carli and Dutot indices will be slightly greater than 1,21 the Jevons and 
Carruthers, Sellwood, and Ward indices will be approximately equal to 1, and the Harmonic 
index will be slightly less than 1. Note that the first order Taylor series approximation to all 
five indices is 1; that is, to the accuracy of a first order approximation, all five indices equal 
unity. 
 
21.77 Now calculate the Laspeyres, Paasche, and Fisher indices for the elementary 
aggregate: 

(21.56) PL = ( ) ( ) 11 1 11 13 3 3i i −+ + + +   ≡ fL(i) ; 

(21.57) PP = ( ) ( )
111 1 1( σ) 1 ( ) 13 3 3i i

−−⎡ ⎤− + + + + σ +⎣ ⎦  ≡ fP(i) ; 

                                                 
21Recall the approximate relationship in formula (21.16) in Section C between the Dutot and Jevons indices. 

In the example, var(e0) = 0, whereas var(I1) > 0. This explains why the Dutot index is not approximately equal 
to the Jevons index in the example.  



 

 

(21.58) PF = L PP Pi  ≡ fF(i) . 
 
First-order Taylor series approximations to the above indices formulas (21.56) to (21.58) 
around i = 0 are given by formulas (21.59)-( 20.61): 
 
(21.59) fL(i) ≈ 1 ; 
(21.60) fP(i) ≈ 1 − 2σi ; 
(21.61) fF(i) ≈ 1 − σ i . 
 
An ideal elementary index for the three commodities is the Fisher ideal index fF(i). The 
approximations in formulas (21.51) to ( 20.55) and formula (21.61) show that the Fisher 
index will lie below all five elementary indices by the amount σi using first order 
approximations to all six indices. Thus all five elementary indices will have an approximate 
upward bias equal to σi compared with an ideal elementary aggregate. 
 
21.78 Suppose that the annual commodity inflation rate for the commodity rising in price is 
equal to 10 percent, so that i = .10 (and, hence, the rate of price decrease for the commodity 
decreasing in price is approximately 10 percent as well). If the expenditure share of the 
increasing price commodity declines by 5 percentage points, then σ = .05, and the annual 
approximate upward bias in all five elementary indices is σi = .05 × .10 = .005 or one half of 
a percentage point. If i increases to 20 percent and σ increases to 10 percent, then the 
approximate bias increases to σi = .10 × .20 = .02, or 2 percent. 

21.79 The above example is highly simplified, but more sophisticated versions of it are 
capable of explaining at least some of the discrepancy between official elementary indices 
and superlative indices calculated by using scanner data for an expenditure class. Basically, 
elementary indices defined without using associated quantity or value weights are incapable 
of picking up shifts in expenditure shares induced by fluctuations in commodity prices.22 To 
eliminate this problem, it will be necessary to sample values along with prices in both the 
base and comparison periods.  

21.80 There is an approach to considering the numerical difference between the Dutot and 
Jevons index that utilizes the sampling approach and has a bearing on the test approach. 
Silver and Heravi (2007) derive an analytical framework to examine the difference between 
the Dutot and Jevons formulas. The approach benefits from being able to distinguish 
calculated indexes based on sample data as estimators of their population counterparts. The 
difference between the two formulas is shown to depend on the change over time in price 
dispersion, which is consistent with the findings of Section D above. The axiomatic approach 
in Section E above found that the Dutot index should not be used for heterogeneous item 
groups. Thus some of the price dispersion, and thus difference between the formulas, will be 
due to product heterogeneity. There is then the question as to how much of the difference 
between the results of the two indexes can be reasonably attributed to the Dutot index’s 
failure of the commensurability test. Silver and Heravi (2007)’s analytical framework used 
                                                 

22Put another way, elementary indices are subject to substitution or representativity bias. 



 

 

hedonic regressions to control for price dispersion arising from product heterogeneity to 
further explain that part of the difference between the Jevons and Dutot indexes due to 
product heterogeneity. In the empirical work they found that this reduction in price 
dispersion accounted for a large part of the difference between the Jevons and Dutot indexes. 

21.81 In the following section, a simple regression-based approach to the construction of 
elementary indices is outlined, and, again, the importance of weighting the price quotes will 
emerge from the analysis. 

H.   A Simple Stochastic Approach to Elementary Indices 

21.82 Recall the notation used in Section B. Suppose the prices of the M commodities for 
period 0 and 1 are equal to the right-hand sides of formulas (21.62) and (21.63) below: 

(21.62) pm
0 = βm ; m = 1,...,M; 

(21.63) pm
1 = αβm ; m = 1,...,M, 

 
where α and the βm are positive parameters. Note that there are 2M prices on the left hand 
sides of equations (21.62) and (21.63) but only M + 1 parameters on the right hand sides of 
these equations. The basic hypothesis in equations (21.62) and (21.63) is that the two price 
vectors p0 and p1 are proportional (with p1 = αp0 , so that α is the factor of proportionality) 
except for random multiplicative errors, and, hence, α represents the underlying elementary 
price aggregate. If logarithms are taken of both sides of equations (21.62) and (21.63) and 
some random errors em

0 and em
1 added to the right hand sides of the resulting equations, the 

following linear regression model results: 
 
(21.64) ln pm

0 = δm + em
0; m = 1,...,M; 

(21.65) ln pm
1 = γ + δm + em

1; m = 1,...,M, 
 
where 
 
(21.66) γ ≡ ln α and δm ≡ ln βm ; m = 1,...,M. 
 
21.83 Note that equations (21.64) and (21.65) can be interpreted as a highly simplified 
hedonic regression model.23 The only characteristic of each commodity is the commodity 
itself. This model is also a special case of the country product dummy method for making 
international comparisons between the prices of different countries.24 A major advantage of 
this regression method for constructing an elementary price index is that standard errors for 
the index number α can be obtained. This advantage of the stochastic approach to index 
number theory was stressed by Selvanathan and Rao (1994). 

21.84 It can be verified that the least squares estimator for γ is 
                                                 

23See Chapters 7, 8, and 21 for material on hedonic regression models. 
24See Summers (1973). In our special case, there are only two “countries,” which are the two observations on 

the prices of the elementary aggregate for two periods. 



 

 

(21.67) γ* ≡
1
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1 ln
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M p=
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If γ* is exponentiated, then the following estimator for the elementary aggregate α is 
obtained: 
 

(21.68) α* ≡ 
1

2

1
1

M M
m

mm

p
p=

⎛ ⎞
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⎝ ⎠

∏  ≡ PJ(p1,p2),  

 
where PJ(p0,p1) is the Jevons elementary price index defined in Section C above. Thus, there 
is a regression model-based justification for the use of the Jevons elementary index. 
 
21.85 Consider the following unweighted least squares model: 

(21.69) min γ, δ’s ( ) ( )2 21 0

1 1

ln ln
M M

m m m m
m m

p p
= =

− δ + − γ − δ∑ ∑ . 

 
It can be verified that the γ solution to the unconstrained minimization problem (21.69) is the 
γ* defined by (21.67). 
 
21.86 There is a problem with the unweighted least squares model defined by formula 
(21.69): the logarithm of each price quote is given exactly the same weight in the model, no 
matter what the revenue on that commodity was in each period. This is obviously 
unsatisfactory, since a price that has very little economic importance is given the same 
weight in the regression model compared with a very important commodity. The economic 
importance of a commodity for an XPI is given by its revenue share in each period, and for 
an MPI, by its share of purchases. The remainder of the section is outlined in terms of an 
XPI, but the arguments apply equally to an MPI. Given commodities have different weights, 
it is useful to consider the following weighted least squares model:  

(21.70) min γ, δ’s ( ) ( )2 20 0 1 1

1 1

ln ln
M M

m m m m m m
m m

s p s p
= =

− δ + − γ − δ∑ ∑ , 

 
where the period t revenue share on commodity m is defined in the usual manner as 
 

(21.71)

1

t t
t m m
m M

t t
m m

m

p q
s

p q
=

≡

∑
; t = 0,1 ; m = 1,...,M. 

 
Thus in the model (21.70), the logarithm of each commodity price quotation in each period is 
weighted by its revenue share in that period. 
 
21.87 The γ solution to (21.70) is 
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where 
 

(21.73) h(a,b) ≡ [ ]
1

1 11 1 2
2 2

aba b a b

−
− −⎡ ⎤+ =⎢ ⎥ +⎣ ⎦

, 

 
and h(a,b) is the harmonic mean of the numbers a and b. Thus γ** is a share weighted 
average of the logarithms of the price ratios pm

1/pm
0. If γ** is exponentiated, then an 

estimator α** for the elementary aggregate α is obtained. 
 
21.88 How does α** compare with the three ideal elementary price indices defined in 
section B? It can be shown25 that α** approximates those three indices to the second order 
around an equal price and quantity point; that is, for most data sets, α** will be very close to 
the Fisher, Törnqvist, and Walsh elementary indices.  

21.89 The results in this section provide some weak support for the use of the Jevons 
elementary index, but they provide much stronger support for the use of weighted elementary 
indices of the type defined in section B above. The results in this section also provide support 
for the use of value or quantity weights in hedonic regressions. 

I.   Conclusion 

The main results in this chapter can be summarized as follows: 
 
(i)  To define a “best” elementary index number formula, it is necessary to have a target 

index number concept. In Section B, it is suggested that normal bilateral index 
number theory applies at the elementary level as well as at higher levels, and hence 
the target concept should be one of the Fisher, Törnqvist, or Walsh formulas. 

(ii)  When aggregating the prices of the same narrowly defined commodity within a 
period, the narrowly defined unit value is a reasonable target price concept. If the unit 
value is not narrowly defined, it is subject to bias, the nature of which was considered 
in Section I and Chapter 2.  

(iii)  The axiomatic approach to traditional elementary indices (that is, no quantity or value 
weights are available) supports the use of the Jevons formula under all circumstances. 
If the commodities in the elementary aggregate are very homogeneous (that is, they 
have the same unit of measurement), then the Dutot formula, can be used. In the case 
of a heterogeneous elementary aggregate (the usual case), the Carruthers, Sellwood, 

                                                 
25 Use the techniques discussed in Diewert (1978).  



 

 

and Ward formula can be used as an alternative to the Jevons formula, but both will 
give much the same numerical answers. 

(iv) The Carli index has an upward bias and the Harmonic index has a downward bias. 

(v)  All five unweighted elementary indices are not really satisfactory. A much more 
satisfactory approach would be to collect quantity or value information along with 
price information and form sample superlative indices as the preferred elementary 
indices. 

(vi) A simple hedonic regression approach to elementary indices supports the use of the 
Jevons formula. However, a more satisfactory approach is to use a weighted hedonic 
regression model. The resulting index will closely approximate the ideal indices 
defined in Section B. 

 
 
 
 


